This application claims priority to Taiwan Application Serial Number 110145755, filed Dec. 7, 2021, which is herein incorporated by reference.
The present disclosure relates to a controlling circuit for a regulator and a controlling method thereof. More particularly, the present disclosure relates to a controlling circuit for a low-power low dropout regulator and a controlling method thereof.
A general low dropout (LDO) regulator is configured to input a specific voltage (e.g., VDDA) and output another specific voltage (e.g., VCSA), and adjusts the another specific voltage according to a reference voltage. The voltage VCSA is less than the voltage VDD1. In the conventional technology, when the low dropout regulator is in an activation mode, a reaction speed of the low dropout regulator turns slow because of the load. When the low dropout regulator is in a standby mode, the low dropout regulator will still consume a certain amount of power. Accordingly, a controlling circuit for a low-power low dropout regulator and a controlling method thereof having the features of avoiding the slowdown of the reaction speed and saving the power consumption are commercially desirable.
According to one aspect of the present disclosure, a controlling circuit for a low-power low dropout regulator is configured to control the low-power low dropout regulator according to a reference voltage. The controlling circuit for the low-power low dropout regulator includes the low-power low dropout regulator, a current load detector and a bias current circuit. The low-power low dropout regulator has a first transmitting terminal and a second transmitting terminal. The first transmitting terminal is configured to transmit a first voltage, the second transmitting terminal is configured to transmit a second voltage, and the low-power low dropout regulator adjusts a voltage difference between the first voltage and the second voltage according to the reference voltage. The current load detector is electrically connected to the low-power low dropout regulator. The current load detector detects the first voltage and the second voltage, and compares the reference voltage with the second voltage to generate a detected signal. The bias current circuit is electrically connected to the low-power low dropout regulator and the current load detector. The bias current circuit generates a bias voltage and a reference current according to the detected signal, and the low-power low dropout regulator is controlled by the bias voltage to dynamically adjust a bias current of the low-power low dropout regulator, so that the bias current is positively correlated with the reference current.
According to another aspect of the present disclosure, a controlling circuit for a low-power low dropout regulator is configured to control a first voltage and a second voltage of the low-power low dropout regulator according to a reference voltage. The controlling circuit for the low-power low dropout regulator includes a current load detector and a bias current circuit. The current load detector is electrically connected to the low-power low dropout regulator. The current load detector detects the first voltage and the second voltage, and compares the reference voltage with the second voltage to generate a detected signal. The bias current circuit is electrically connected to the low-power low dropout regulator and the current load detector. The bias current circuit generates a bias voltage and a reference current according to the detected signal, and the low-power low dropout regulator is controlled by the bias voltage to dynamically adjust a bias current of the low-power low dropout regulator, so that the bias current is positively correlated with the reference current. A reaction speed of the current load detector is faster than a reaction speed of the low-power low dropout regulator.
According to further another aspect of the present disclosure, a controlling method for a low-power low dropout regulator is configured to control the low-power low dropout regulator according to a reference voltage. The controlling method for the low-power low dropout regulator includes performing a voltage supplying step, a voltage regulating step, a current load detecting step and a bias current adjusting step. The voltage supplying step includes supplying a first voltage to a low-power low dropout regulator, a current load detector and a bias current circuit. The voltage regulating step includes configuring the low-power low dropout regulator to generate a second voltage according to the first voltage, and adjust a voltage difference between the first voltage of a first transmitting terminal and the second voltage of a second transmitting terminal according to the reference voltage. The current load detecting step includes configuring the current load detector to detect the first voltage and the second voltage and compare the reference voltage with the second voltage to generate a detected signal. The bias current adjusting step includes configuring the bias current circuit to generate a bias voltage and a reference current according to the detected signal and control the low-power low dropout regulator by the bias voltage to dynamically adjust a bias current of the low-power low dropout regulator, so that the bias current is positively correlated with the reference current.
The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
The embodiment will be described with the drawings. For clarity, some practical details will be described below. However, it should be noted that the present disclosure should not be limited by the practical details, that is, in some embodiment, the practical details is unnecessary. In addition, for simplifying the drawings, some conventional structures and elements will be simply illustrated, and repeated elements may be represented by the same labels.
It will be understood that when an element (or device) is referred to as be “connected to” another element, it can be directly connected to the other element, or it can be indirectly connected to the other element, that is, intervening elements may be present. In contrast, when an element is referred to as be “directly connected to” another element, there are no intervening elements present. In addition, the terms first, second, third, etc. are used herein to describe various elements or components, these elements or components should not be limited by these terms. Consequently, a first element or component discussed below could be termed a second element or component.
Please refer to
Please refer to
The low-power low dropout regulator 200 has a first transmitting terminal T1 and a second transmitting terminal T2. The first transmitting terminal T1 is configured to transmit a first voltage VDDA. The second transmitting terminal T2 is configured to transmit a second voltage VCSA. The low-power low dropout regulator 200 adjusts a voltage difference between the first voltage VDDA and the second voltage VCSA according to the reference voltage VREF. The first voltage VDDA is greater than the second voltage VCSA. In an embodiment, the first voltage VDDA is an external power and is equal to 1.35 V, and the second voltage VCSA is an internal power and is equal to 0.94 V, but the present disclosure is not limited thereto. The low-power low dropout regulator 200 includes a first transistor 210, a first comparator 220 and a mirrored bias current circuit 230.
The first transistor 210 is electrically connected between the first transmitting terminal T1 and the second transmitting terminal T2. The first transistor 210 has a first source electrode, a first gate electrode and a first drain electrode, and the first source electrode, the first gate electrode and the first drain electrode are electrically connected to the first voltage VDDA, a comparison signal Vpg and the second voltage VCSA, respectively. The first transistor 210 is a PMOS transistor.
The first comparator 220 is electrically connected to the first transmitting terminal T1, the second transmitting terminal T2 and the first transistor 210. The first comparator 220 is configured to compare the reference voltage VREF with the second voltage VCSA to generate the comparison signal Vpg, and the comparison signal Vpg is electrically connected to the first transistor 210 to adjust the voltage difference between the first voltage VDDA and the second voltage VCSA. In detail, the first comparator 220 includes a plurality of transistors P11, P12, P13, N11, N12, N13, a capacitor C1 and a resistor R1. The transistor N11 is electrically connected between the transistor P11 and the mirrored bias current circuit 230. The transistor N12 is electrically connected between the transistor P12 and the mirrored bias current circuit 230. The transistor N13 is electrically connected between the transistor P13 and the mirrored bias current circuit 230. The transistors P11, P12 are connected to each other. The transistor P13 is electrically connected to the transistors P11, N11, N13 and the first transistor 210. The transistor N11 is controlled by the second voltage VCSA. The transistors N12, N13 are controlled by the reference voltage VREF. Any one of the transistors P11, P12, P13 is a PMOS transistor, and any one of the transistors N11, N12, N13 is an NMOS transistor. The capacitor C1 and the resistor R1 are connected to each other in series, and electrically connected between the gate electrode and the drain electrode of the transistor P13 to realize the Miller Compensation.
The mirrored bias current circuit 230 includes a second transistor 232 and a transistor 234. The second transistor 232 and the transistor 234 are both electrically connected to the first comparator 220 and the bias current circuit 400. In detail, the second transistor 232 has a second source electrode, a second gate electrode and a second drain electrode. The second source electrode, the second gate electrode and the second drain electrode are electrically connected to a ground terminal (VSS), the bias current circuit 400 and the first comparator 220, respectively. The second transistor 232 is electrically connected to the transistors N11, N12. The transistor 234 is electrically connected to the transistor N13. The second transistor 232 and the transistor 234 are controlled by the bias voltage (Vnact/Vnstby) to generate a current I1 and a current I2, respectively. The bias current (i.e., one of the bias current Iact and the bias current Istby, which can be represented by “Iact/Istby”) is equal to a sum of the current I1 and the current I2. Any of the second transistor 232 and the transistor 234 is an NMOS transistor.
The current load detector 300 includes a third transistor 310 and a second comparator 320. The third transistor 310 is electrically connected between the first transmitting terminal T1 and the second transmitting terminal T2. The third transistor 310 has a third source electrode, a third gate electrode and a third drain electrode. The third source electrode, the third gate electrode and the third drain electrode are electrically connected to the first voltage VDDA, the detected signal VC and the second voltage VCSA, respectively. The third transistor 310 is a PMOS transistor. Moreover, the second comparator 320 is electrically connected to the first transmitting terminal T1, the second transmitting terminal T2 and the third transistor 310. The second comparator 320 is configured to compare the reference voltage VREF with the second voltage VCSA to generate the detected signal VC, and the detected signal VC is electrically connected to the third transistor 310. A circuit structure of the current load detector 300 is the same as a circuit structure of the low-power low dropout regulator 200. An area of the third transistor 310 is less than an area of the first transistor 210. A reaction speed of the current load detector 300 is faster than the reaction speed of the low-power low dropout regulator 200. The reaction speed of the low-power low dropout regulator 200 is proportional to the bias current (Iact/Istby) and inversely proportional to the load. In one embodiment, the reaction speed of the current load detector 300 is 20 times faster than the reaction speed of the low-power low dropout regulator 200, but the present disclosure is not limited thereto.
The second comparator 320 includes a plurality of transistors P21, P22, P23, N21, N22, N23, QN21, QN22, a capacitor C2 and a resistor R2. The transistor N21 is electrically connected between the transistor P21 and the transistor QN21. The transistor N22 is electrically connected between the transistor P22 and the transistor QN21. The transistor N23 is electrically connected between the transistor P23 and the transistor QN22. The transistors P21, P22 are connected to each other. The transistor P23 is electrically connected to the transistors P21, N21, N23 and the third transistor 310. The transistor N21 is controlled by the second voltage VCSA. The transistors N22, N23 are controlled by the reference voltage VREF. The transistors QN21, QN22 are controlled by another bias voltage VN. Any one of the transistors P21, P22, P23 is a PMOS transistor. Any one of the transistors N21, N22, N23, QN21, QN22 is an NMOS transistor. The capacitor C2 and the resistor R2 are connected to each other in series, and electrically connected between the gate electrode and the drain electrode of the transistor P23 to realize the Miller Compensation.
The bias current circuit 400 includes a fourth transistor 410, a fifth transistor 420 and a resistor 430. The fourth transistor 410 is electrically connected between the first transmitting terminal T1 and the second gate electrode of the second transistor 232. The fourth transistor 410 has a fourth source electrode, a fourth gate electrode and a fourth drain electrode. The fourth source electrode, the fourth gate electrode and the fourth drain electrode are electrically connected to the first voltage VDDA, the detected signal VC and the second gate electrode, respectively. The fifth transistor 420 is electrically connected to the fourth transistor 410. The fifth transistor 420 has a fifth source electrode, a fifth gate electrode and a fifth drain electrode. The fifth source electrode, the fifth gate electrode and the fifth drain electrode are electrically connected to the ground terminal, the fifth drain electrode and the fourth drain electrode, respectively. The resistor 430 is electrically connected between the first transmitting terminal T1 and the second gate electrode of the second transistor 232. The fourth transistor 410 is a PMOS transistor, the fifth transistor 420 is an NMOS transistor. A current Ifix and a current Idynamic pass through the resistor 430 and the fourth transistor 410, respectively, and the current Ifix is a constant. A reference current Iref passes through the fifth transistor 420, and the reference current Iref is equal to a sum of the current Ifix and the current Idynamic.
The bias current circuit 400 generates the bias voltage (Vnact/Vnstby) and the reference current Iref according to the detected signal VC. The mirrored bias current circuit 230 of the low-power low dropout regulator 200 is controlled by the bias voltage (Vnact/Vnstby) to dynamically adjust a bias current (Iact/Istby) passed through the mirrored bias current circuit 230, so that the bias current (Iact/Istby) is positively correlated with the reference current Iref. In an embodiment, the bias current (Iact/Istby) of the low-power low dropout regulator 200 is equal to the reference current Iref of the bias current circuit 400, a range of the bias voltage (Vnact/Vnstby) is from a threshold voltage (e.g., 0.2 V) to the first voltage VDDA (e.g., 1.35 V), but the present disclosure is not limited thereto.
Please refer to
Please refer to
The voltage supplying step S2 includes supplying the first voltage VDDA to the low-power low dropout regulator 200, the current load detector 300 and the bias current circuit 400. The voltage regulating step S4 includes configuring the low-power low dropout regulator 200 to generate the second voltage VCSA according to the first voltage VDDA, and adjust a voltage difference between the first voltage VDDA of the first transmitting terminal T1 and the second voltage VCSA of the second transmitting terminal T2 according to the reference voltage VREF. The current load detecting step S6 includes configuring the current load detector 300 to detect the first voltage VDDA and the second voltage VCSA and compare the reference voltage VREF with the second voltage VCSA to generate the detected signal VC. The bias current adjusting step S8 includes configuring the bias current circuit 400 to generate the bias voltage (Vnact/Vnstby) and the reference current Iref according to the detected signal VC and control the low-power low dropout regulator 200 by the bias voltage (Vnact/Vnstby) to dynamically adjust the bias current (Iact/Istby) of the low-power low dropout regulator 200, so that the bias current (Iact/Istby) is positively correlated with the reference current Iref. Thus, the controlling method 500 for the low-power low dropout regulator 200 of the present disclosure can utilize the current load detector 300, which has a fast reaction speed, to generate the detected signal VC, and dynamically adjust the bias current (Iact/Istby) of the low-power low dropout regulator 200 via the detected signal VC and the bias current circuit 400, thereby, maintaining or increasing the reaction speed of the low-power low dropout regulator 200 and saving the power consumption.
Please refer to
Please refer to
Please refer to
In other embodiments, the low-power low dropout regulator and the current load detector can be circuits of variety of LDO structure, but the present disclosure is not limited thereto.
According to the aforementioned embodiments and examples, the advantages of the present disclosure are described as follows.
1. The controlling circuit for the low-power low dropout regulator 200 of the present disclosure can utilize the current load detector, which has a fast reaction speed, to generate the detected signal, and dynamically adjust the bias current of the low-power low dropout regulator via the detected signal, thereby, maintaining or increasing the reaction speed of the low-power low dropout regulator to has a high voltage stability and saving the power consumption. Therefore, the controlling circuit for the low-power low dropout regulator 200 of the present disclosure can solve the problem of the conventional low dropout regulator that the reaction speed of the low-power low dropout regulator turn slow in the activation mode, and the power consumption in the standby mode is too much.
2. In response to determining that the low-power low dropout regulator is in the activation mode, the detected signal at the low voltage level increases the reference current and the bias current to maintain or increase the reaction speed of the low-power low dropout regulator.
3. In response to determining that the low-power low dropout regulator is in the standby mode, the detected signal at the high voltage level decreases the reference current and the bias current to save the power consumption substantially (i.e., when the standby mode is IDD3P, the power consumption can be saved by 80%).
Although the present disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
110145755 | Dec 2021 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
10199932 | Hastings | Feb 2019 | B1 |
20160026196 | Mnich | Jan 2016 | A1 |
20220140791 | Vangara | May 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20230176600 A1 | Jun 2023 | US |