Multi-chamber containers are used for a number of products. The primary use is where a product is comprised of two or more incompatible components. These components must be kept separate until the time of use. At that time they can be mixed and used. The incompatibility can be the result of a fast or slow reaction between components. As an example oxidants and reducing agents must be kept separated. Likewise acids and bases must be kept separated. Consumer products where components must be kept separated include hair dye and bleaching products and some dentifrice such as high fluoride formulations, densitizing formulations, baking soda/peroxide formulations and peroxide tooth whitening formulations. A problem that can arise in the dispensing of multi-component formulations from multi-chamber containers and how to get the desired amount to flow from each chamber, This can be equal amounts from each chamber, or differing amounts depending on the product and the components.
A multi-chamber container that is used for some hair coloring products and for some dentifrices is the dual chamber tube. These can be side by side dual chamber tubes as described in U.S. Pat. No. 1,894,115; U.S. Pat. No. 3,758,520 and U.S. Pat. No. 3,980,222 or concentric tubes as described in U.S. Pat. No. 1,535,529; U.S. Pat. No. 1,639,699 and U.S. Pat. No. 1,699,532. The problem of dispensing desired amounts from each chamber of a dual chamber tube has been addressed in U.S. Patent Applications U.S. 2003/0106903 and U.S. 2003/0106905. The technique in these patent applications is to place a flow controller in the shoulder of the tube. This may can be effective in some instances but is of a complex construction and difficult to adjust for dispensing the substance in varying ratios.
The problem is solved for dual chamber tubes by placing a flow modifying unit in the nozzle of the tube. This facilitates the construction of the flow modifying unit and provides an efficient way to be able to adjust the flow ratio from each chamber. Also by placing the flow modifying unit in the nozzle there can be better control of the suckback of product from the nozzle back down into the tube chamber. Further there is an advantage in that the flow modifying unit can be produced at the time that the nozzle is made through the use of specially designed mold pins.
A multi-chamber dispensing tube has a tube body and a dispensing portion. The dispensing portion is comprised of the shoulder and a dispensing nozzle. The dispensing nozzle has a channel connecting the shoulder of each chamber with the exterior of the dispensing tube. The dispensing nozzle and the channels can be of essentially any shape. The dispensing nozzle usually will be circular in cross-section, but can be of any shape. In a two chamber dispensing tube the dispensing nozzle usually will be of a D-shape, the linear part of the D-shape being the nozzle inner divider wall and the curved portion being the nozzle exterior wall. The tube shoulder connects the tube body to the dispensing nozzle.
The flow of product from each chamber of a multi-chamber tube can be affected by putting a flow control unit in one or more of the channels in the nozzle. The flow control unit, preferably is a constriction, and preferably is placed at an intermediate point in the channel, that is, at a point between the channel inlet and the channel exit. It can be placed on an exterior channel wall, an inner divider wall of the channels or on both walls. When on the exterior wall a viscous product being extruded from the tube will tend to have the separate strands come together at the dispensing nozzle exit. When on the interior divider wall the opposite effect of the strands diverging can occur. However, the constriction can be fully or partially on an inner wall, outer wall, or both walls. Usually the flow control unit only will be in one channel since this will efficiently and effectively control the flow of product. However it can be in both channels.
A constriction in a channel also will limit the suckback of a product back down the channel and into the tube shoulder and body. By limiting suckback the product from each chamber is maintained in a “dispensing ready” state, reducing effort to dispense the product and reducing air bubbles in the product.
The flow modifying unit shape, dimensions and placement is determined for each set of products being dispensed. Molding pins used to form the channels of the dispensing nozzle can be machined to create the constriction in the channel as the dispensing portion is simultaneously formed and attached to the tube chamber walls and, divider walls, preferably by compression molding. The mold base also can be machined to produce the constriction. This is accomplished by a recess in the end of one or both of the mold pins for forming a channel and/or in the mold base. It is preferred that the recess to produce the constriction be on the molding pin.
The invention will be described in more detail in its preferred embodiments with reference to the drawings. It is understood that the inventive concept is susceptible to additional embodiments, all of which are considered to be encompassed by the present invention.
The constrictions 40, 41, 42, 43, 44, 45, 46 and 47(a) and 47(b) can be placed at various locations in channels 23/25 of nozzle 18. This can be from adjacent the bottom of the nozzle to adjacent the top of the nozzle. A preferred position is one intermediate these locations. In the drawings the constrictions are shown around an intermediate point for illustration purposes. The placement will be at a location of high shear and will be in the channel of the component dispensing at a higher velocity.
The top surfaces 67, 68 and 69 will mate with mold pin 50 and an upper mold cavity to complete the mold and form the shoulder and nozzle. The upper mold cavity is comprised of a piece having a complementary shape to that of base mold sections 60 and 62. Mold pin 50 will extend in to the upper mold portion to form part of the channels 23 and 25. In the present embodiment the constriction will be formed by recess 69 of the upper base mold portion 62 and/or by recess 56 of the mold pin 50. Usually only a recess on the mold pin will be needed. However, the option of having a recess in the mold base portion 62 could be useful. Further, if the recess is on the mold pin 50 there need not be a recess on the mold base 64. It is preferred that the recess be on the mold pin since this is a low cost part and can be replaced at a lower cost than a mold base to change the constriction.
The multi-chamber tubes can be comprised of a monolayer material or can be a laminate. Usually the material will be a laminate since laminates offer better protection for the product in the tube. Laminate materials comprise thermoplastics such as ethylene and propylene polymers and copolymers and barrier polymers and copolymers such as ethylene vinyl alcohol and polyamides. The shoulder and nozzle usually will be a thermoplastic that is bondable to material of the tube body. Usually they similarly will be ethylene and propylene polymers and copolymers and barrier polymers and copolymers.
Various products will be packaged in the tubes. The usual products are personal care products and oral care products. Personal care products include hair coloring and treatment products, skin cleansing and related skin care products. Oral care products include dentifrices where the components must be kept separate until use, such as tooth whitening dentifrices which contain a peroxide, baking soda/peroxide dentifrices and high fluoride content dentifrices.
This application is a Divisional Application of U.S. Ser. No. 10/852,627, filed May 24, 2004, the contents of which is incorporated herein by reference. This invention relates to the control of flow of viscous substances from multi-chamber containers. Further this invention relates to a method to form a flow modifying unit in a dispensing nozzle as the nozzle is being formed.
Number | Date | Country | |
---|---|---|---|
Parent | 10852627 | May 2004 | US |
Child | 12615734 | US |