This disclosure relates generally to controlling particle therapy.
Particle therapy systems use an accelerator to generate a particle beam for treating afflictions, such as tumors. In operation, the particle beam is accelerated inside a cavity of the particle accelerator, and removed from the cavity through an extraction channel. Various elements are used to focus the particle beam and apply it to appropriate areas of a patient.
Different patients may require different treatment plans. A prescription defines various operational characteristics of a particle therapy system, which may be used to implement a treatment plan. Information in the prescription is translated into various machine instructions that are used to configure to the particle therapy system to achieve the operational characteristics required by the prescription.
An example particle therapy system includes the following: a gantry that is rotatable relative to a patient position; a particle accelerator mounted to the gantry, where the particle accelerator is for outputting a particle beam essentially directly to the patient position; and a control system to receive a prescription and to generate machine instructions for configuring one or more operational characteristics of the particle therapy system. At least one of the operational characteristics relates to, or is affected by, a rotational angle of the gantry relative to the patient position. The example particle therapy system may include one or more of the following features, either alone or in combination.
The particle therapy may include a particle source to provide pulses of ionized plasma to a cavity. A pulse of the particle source may have a pulse width corresponding to a duration of operation of the particle source to produce the pulse. The at least one operational characteristic may be a multiplier that is based on a rotational position of the gantry and that that is applied to the pulse width.
At least one of the operational characteristics may be a dosage of particles output by the particle accelerator.
At least one of the operational characteristics may be a dose rate of particles output by the particle accelerator. The example particle therapy system may include the following: a particle source to provide pulses of ionized plasma to a cavity, where each pulse of the particle source has a pulse width that corresponds to a duration of operation of the particle source to produce the corresponding pulse; and a modulator wheel having different thicknesses, where each thickness extends across a different circumferential length of the modulator wheel. Configuring the dose rate may include varying pulse widths based on rotational position of the modulator wheel.
At least one of the operational characteristics may be a position of a patient. The example particle therapy system may include a structure on which the patient lies, where the structure corresponds to the patient position. Configuring the position of the patient may include moving the structure relative to one or more coordinate positions.
At least one of the operational characteristics may be field size of a particle beam output by the particle accelerator. The example particle therapy system may include scattering devices having different configurations for changing the field size of the particle beam. Configuring the field size may include selecting one of the scattering devices to move into a path of the particle beam, and moving the selected scattering device into the path of the particle beam.
At least one of the operational characteristics may be depth (into a patient) of a particle beam output by the particle accelerator. The example particle therapy system may include an absorber having different thicknesses for absorbing particle beam. Configuring the depth may include controlling the absorber so as to place a specific thickness in a path of the particle beam.
The example particle therapy system may include one or more modulator wheels. Each modulator wheel may have different thicknesses. Each thickness may extend across a different circumferential length of the modulator wheel. Configuring the depth may include selecting a modulator wheel to move into a path of the particle beam.
The example particle therapy system may include a particle source to provide pulses of ionized plasma to a cavity. Each pulse of the particle source has a pulse width corresponding to a duration of operation of the particle source to produce the corresponding pulse. Configuring the depth may include selecting a file containing instructions for varying pulse width based on a rotational position of a selected modulator wheel. Configuring the extent of the depth of a particle beam may include turning-off the particle source at specific rotational positions of the modulator wheel.
At least one of the operational characteristics includes a shape of a particle beam output by the particle accelerator. The example particle therapy system may include one or more apertures corresponding to different shapes. Configuring the shape of particle beam may include selecting one of the apertures and moving the selected aperture into a path of the particle beam.
At least one of the operational characteristics includes a depth-wise shape of a particle beam output by the particle accelerator. The example particle therapy system may include a range compensating bolus. Configuring the depth-wise shape of particle beam may include moving the range compensating bolus into a path of the particle beam.
The foregoing operational characteristics may be configured individually or in any appropriate combination.
The control system may include one or more computing devices programmed to control elements of the particle therapy system that control the operational characteristics based on machine instructions.
The particle therapy system may include a scanning system, and one or more of the operational characteristics may relate to the scanning system. Configuring one or more operational characteristics of the particle therapy system may be performed using open-loop control or using closed-loop control.
Configuring one or more operational characteristics of the particle therapy system may include adjusting a position of a microabsorber wheel, adjusting a magnetic current of a superconducting magnet in the particle accelerator, and changing a pulse width of particle pulses output from the accelerator.
Two or more of the features described in this disclosure, including those described in this summary section, may be combined to form implementations not specifically described herein.
Control of the various systems described herein, or portions thereof, may be implemented via a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices. The systems described herein, or portions thereof, may be implemented as an apparatus, method, or electronic system that may include one or more processing devices and memory to store executable instructions to implement control of the stated functions.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Described herein is an example of a particle therapy system, such as a proton or ion therapy system. The particle therapy system includes a particle accelerator—in this example, a synchrocyclotron—mounted on a gantry. The gantry enables the accelerator to be rotated around a patient position, as explained in more detail below. In some implementations, the gantry is steel and has two legs mounted for rotation on two respective bearings that lie on opposite sides of a patient. The particle accelerator is supported by a steel truss that is long enough to span a treatment area in which the patient lies and that is attached stably at both ends to the rotating legs of the gantry. As a result of rotation of the gantry around the patient, the particle accelerator also rotates.
In an example implementation, the particle accelerator (e.g., the synchrocyclotron) includes a cryostat that holds a superconducting coil for conducting a current that generates a magnetic field (B). In this example, the cryostat uses liquid helium (He) to maintain the coil at superconducting temperatures, e.g., 4° Kelvin (K). Magnetic yokes are adjacent (e.g., around) the cryostat, and define a cavity in which particles are accelerated. The cryostat is attached to the magnetic yokes through straps or the like.
In this example implementation, the particle accelerator includes a particle source (e.g., a Penning Ion Gauge—PIG source) to provide a plasma column to the cavity. Hydrogen gas is ionized to produce the plasma column. A voltage source provides a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column. As noted, in this example, the particle accelerator is a synchrocyclotron. Accordingly, the RF voltage is swept across a range of frequencies to account for relativistic effects on the particles (e.g., increasing particle mass) when extracting particles from the column. The magnetic field produced by the coil causes particles accelerated from the plasma column to accelerate orbitally within the cavity. A magnetic field regenerator is positioned in the cavity and may be used to adjust the existing magnetic field inside the cavity to thereby change locations of successive orbits of the particles accelerated from the plasma column so that, eventually, the particles output to an extraction channel that passes through the yokes. The extraction channel receives particles accelerated from the plasma column and outputs the received particles from the cavity. Elements both inside and outside the extraction channel shape and focus the particle beam for application.
The particle beam is applied to a patient in accordance with a particular treatment plan. A prescription defines operational characteristics of the particle therapy system that are used to implement the treatment plan. A control system, which may be part of the particle therapy system, translates the prescription into machine instructions, including, but not limited to, commands, parameters, and/or other machine-usable information.
In this regard, the control system may include one or more computers, processing devices, and the like that are programmed to use the instructions translated from the prescription to control various operational aspects of the particle therapy system. In some implementations, translation is performed using mathematical processes and/or look-up table(s) (LUT), as described below. Although a prescription may specify any number of operational characteristics appropriate to a particular particle therapy system, in an implementation, the prescription specifies one or more of the following: particle dose, particle dose rate, patient position (as defined by a “couch” on which the patient lies), patient couch rotational angle, gantry rotational angle, beam field size, beam depth, an extent of the beam depth, a configuration of an aperture used to limit the area of the particle beam, and a configuration of a range compensating bolus (or, simply, “bolus”) used to customize the penetration depth of the particle beam. Each of these operational characteristics is described in more detail below.
Once the control system has obtained the machine instructions, the control system uses those machine instructions to configure the particle therapy system so that it has operational characteristics appropriate for the treatment plan. The particle therapy system is configurable on a case-by-case basis.
The techniques described herein for controlling particle therapy are not limited to use with a particular particle therapy system, but rather may be used in any appropriate particle therapy system. The foregoing techniques also may be used in other appropriate medical treatment or diagnostic systems.
An example of a particle therapy system in which the techniques described herein may be used is provided below.
Referring to
In some implementations, the steel gantry has two legs 508, 510 mounted for rotation on two respective bearings 512, 514 that lie on opposite sides of the patient. The accelerator is supported by a steel truss 516 that is long enough to span a treatment area 518 in which the patient lies (e.g., twice as long as a tall person, to permit the person to be rotated fully within the space with any desired target area of the patient remaining in the line of the beam) and is attached stably at both ends to the rotating legs of the gantry.
In some examples, the rotation of the gantry is limited to a range 520 of less than 360 degrees, e.g., about 180 degrees, to permit a floor 522 to extend from a wall of the vault 524 that houses the therapy system into the patient treatment area. The limited rotation range of the gantry also reduces the required thickness of some of the walls, which provide radiation shielding of people outside the treatment area. A range of 180 degrees of gantry rotation is enough to cover all treatment approach angles, but providing a larger range of travel can be useful. For example the range of rotation may be between 180 and 330 degrees and still provide clearance for the therapy floor space.
The horizontal rotational axis 532 of the gantry is located nominally one meter above the floor where the patient and therapist interact with the therapy system. This floor is positioned about 3 meters above the bottom floor of the therapy system shielded vault. The accelerator can swing under the raised floor for delivery of treatment beams from below the rotational axis. The patient couch moves and rotates in a substantially horizontal plane parallel to the rotational axis of the gantry. The couch can rotate through a range 534 of about 270 degrees in the horizontal plane with this configuration. This combination of gantry and patient rotational ranges and degrees of freedom allow the therapist to select virtually any approach angle for the beam. If needed, the patient can be placed on the couch in the opposite orientation and then all possible angles can be used.
In some implementations, the accelerator uses a synchrocyclotron configuration having a very high magnetic field superconducting electromagnetic structure. Because the bend radius of a charged particle of a given kinetic energy is reduced in direct proportion to an increase in the magnetic field applied to it, the very high magnetic field superconducting magnetic structure permits the accelerator to be made smaller and lighter. The synchrocyclotron uses a magnetic field that is uniform in rotation angle and falls off in strength with increasing radius. Such a field shape can be achieved regardless of the magnitude of the magnetic field, so in theory there is no upper limit to the magnetic field strength (and therefore the resulting particle energy at a fixed radius) that can be used in a synchrocyclotron.
Superconducting materials lose their superconducting properties in the presence of very high magnetic fields. High performance superconducting wire windings are used to allow very high magnetic fields to be achieved.
Superconducting materials typically need to be cooled to low temperatures for their superconducting properties to be realized. In some examples described here, cryo-coolers are used to bring the superconducting coil windings to temperatures near absolute zero. Using cryo-coolers can reduce complexity and cost.
The synchrocyclotron is supported on the gantry so that the beam is generated directly in line with the patient. The gantry permits rotation of the cyclotron about a horizontal rotational axis that contains a point (isocenter 540) within, or near, the patient. The split truss that is parallel to the rotational axis, supports the cyclotron on both sides.
Because the rotational range of the gantry is limited, a patient support area can be accommodated in a wide area around the isocenter. Because the floor can be extended broadly around the isocenter, a patient support table can be positioned to move relative to and to rotate about a vertical axis 542 through the isocenter so that, by a combination of gantry rotation and table motion and rotation, any angle of beam direction into any part of the patient can be achieved. The two gantry arms are separated by more than twice the height of a tall patient, allowing the couch with patient to rotate and translate in a horizontal plane above the raised floor.
Limiting the gantry rotation angle allows for a reduction in the thickness of at least one of the walls surrounding the treatment room. Thick walls, typically constructed of concrete, provide radiation protection to individuals outside the treatment room. A wall downstream of a stopping proton beam may be about twice as thick as a wall at the opposite end of the room to provide an equivalent level of protection. Limiting the range of gantry rotation enables the treatment room to be sited below earth grade on three sides, while allowing an occupied area adjacent to the thinnest wall reducing the cost of constructing the treatment room.
In the example implementation shown in
The radiation therapy system described in this example is used for proton radiation therapy, but the same principles and details can be applied in analogous systems for use in heavy ion (ion) treatment systems.
As shown in
The two superconducting magnet coils are centered on a common axis 47 and are spaced apart along the axis. As shown in
The entire coil can then be covered with copper sheets to provide thermal conductivity and mechanical stability and then contained in an additional layer of epoxy. The precompression of the coil can be provided by heating the stainless steel reverse bobbin and fitting the coils within the reverse bobbin. The reverse bobbin inner diameter is chosen so that when the entire mass is cooled to 4 K, the reverse bobbin stays in contact with the coil and provides some compression. Heating the stainless steel reverse bobbin to approximately 50 degrees C. and fitting coils at a temperature of 100 degrees Kelvin can achieve this.
The geometry of the coil is maintained by mounting the coils in a reverse rectangular bobbin 56 to exert a restorative force 60 that works against the distorting force produced when the coils are energized. As shown in
Referring to
The superconducting coils are maintained at temperatures near absolute zero (e.g., about 4 degrees Kelvin) by enclosing the coil assembly (the coils and the bobbin) inside an evacuated annular aluminum or stainless steel cryostatic chamber 70 that provides a free space around the coil structure, except at a limited set of support points 71, 73. In an alternate version (
In some implementations, the temperature near absolute zero is achieved and maintained using one single-stage Gifford-McMahon cryo-cooler and three two-stage Gifford McMahon cryo-coolers. Each two stage cryo-cooler has a second stage cold end attached to a condenser that recondenses Helium vapor into liquid Helium. The cryo-cooler heads are supplied with compressed Helium from a compressor. The single-stage Gifford-McMahon cryo-cooler is arranged to cool high temperature (e.g., 50-70 degrees Kelvin) leads that supply current to the superconducting windings.
In some implementations, the temperature near absolute zero is achieved and maintained using two Gifford-McMahon cryo-coolers 72, 74 that are arranged at different positions on the coil assembly. Each cryo-cooler has a cold end 76 in contact with the coil assembly. The cryo-cooler heads 78 are supplied with compressed Helium from a compressor 80. Two other Gifford-McMahon cryo-coolers 77, 79 are arranged to cool high temperature (e.g., 60-80 degrees Kelvin) leads that supply current to the superconducting windings.
The coil assembly and cryostatic chambers are mounted within and fully enclosed by two halves 81, 83 of a pillbox-shaped magnet yoke 82. In this example, the inner diameter of the coil assembly is about 74.6 cm. The iron yoke 82 provides a path for the return magnetic field flux 84 and magnetically shields the volume 86 between the pole faces 44, 46 to prevent external magnetic influences from perturbing the shape of the magnetic field within that volume. The yoke also serves to decrease the stray magnetic field in the vicinity of the accelerator. In some implementations, the synchrocyclotron may have an active return system to reduce stray magnetic fields. An example of an active return system is described in U.S. patent application Ser. No. 13/907,601, which was filed on May 31, 2013, the contents of which are incorporated herein by reference. In the active return system, the relatively large magnetic yokes described herein are replaced by smaller magnetic structures, referred to as pole pieces. Superconducting coils run current opposite to the main coils described herein in order to provide magnetic return and thereby reduce stray magnetic fields.
As shown in
Particle source 90 is fed from a supply 99 of hydrogen through a gas line 101 and tube 194 that delivers gaseous hydrogen. Electric cables 94 carry an electric current from a current source 95 to stimulate electron discharge from cathodes 192, 190 that are aligned with the magnetic field, 200.
In some implementations, the gas in gas tube 101 may include a mixture of hydrogen and one or more other gases. For example, the mixture may contain hydrogen and one or more of the noble gases, e.g., helium, neon, argon, krypton, xenon and/or radon (although the mixture is not limited to use with the noble gases). In some implementations, the mixture may be a mixture of hydrogen and helium. For example, the mixture may contain about 75% or more of hydrogen and about 25% or less of helium (with possible trace gases included). In another example, the mixture may contain about 90% or more of hydrogen and about 10% or less of helium (with possible trace gases included). In examples, the hydrogen/helium mixture may be any of the following: >95%/<5%, >90%/<10%, >85%/<15%, >80%/<20%, >75%/<20%, and so forth.
Possible advantages of using a noble (or other) gas in combination with hydrogen in the particle source may include: increased beam intensity, increased cathode longevity, and increased consistency of beam output.
In this example, the discharged electrons ionize the gas exiting through a small hole from tube 194 to create a supply of positive ions (protons) for acceleration by one semicircular (dee-shaped) radio-frequency plate 100 that spans half of the space enclosed by the magnet structure and one dummy dee plate 102. In the case of an interrupted particle source (an example of which is described in U.S. patent application Ser. No. 11/948,662), all (or a substantial part) of the tube containing plasma is removed at the acceleration region, thereby allowing ions to be more rapidly accelerated in a relatively high magnetic field.
As shown in
For the beam emerging from the centrally located particle source to clear the particle source structure as it begins to spiral outward, a large voltage difference is required across the radio frequency plates. 20,000 Volts is applied across the radio frequency plates. In some versions from 8,000 to 20,000 Volts may be applied across the radio frequency plates. To reduce the power required to drive this large voltage, the magnet structure is arranged to reduce the capacitance between the radio frequency plates and ground. This is done by forming holes with sufficient clearance from the radio frequency structures through the outer yoke and the cryostat housing and making sufficient space between the magnet pole faces.
The high voltage alternating potential that drives the dee plate has a frequency that is swept downward during the accelerating cycle to account for the increasing relativistic mass of the protons and the decreasing magnetic field. The dummy dee does not require a hollow semi-cylindrical structure as it is at ground potential along with the vacuum chamber walls. Other plate arrangements could be used such as more than one pair of accelerating electrodes driven with different electrical phases or multiples of the fundamental frequency. The RF structure can be tuned to keep the Q high during the required frequency sweep by using, for example, a rotating capacitor having intermeshing rotating and stationary blades. During each meshing of the blades, the capacitance increases, thus lowering the resonant frequency of the RF structure. The blades can be shaped to create a precise frequency sweep required. A drive motor for the rotating condenser can be phase locked to the RF generator for precise control. One bunch of particles is accelerated during each meshing of the blades of the rotating condenser.
The vacuum chamber 119 in which the acceleration occurs is a generally cylindrical container that is thinner in the center and thicker at the rim. The vacuum chamber encloses the RF plates and the particle source and is evacuated by the vacuum pump 111. Maintaining a high vacuum insures that accelerating ions are not lost to collisions with gas molecules and enables the RF voltage to be kept at a higher level without arcing to ground.
Protons traverse a generally spiral orbital path beginning at the particle source. In half of each loop of the spiral path, the protons gain energy as they pass through the RF electric field in space 107. As the ions gain energy, the radius of the central orbit of each successive loop of their spiral path is larger than the prior loop until the loop radius reaches the maximum radius of the pole face. At that location a magnetic and electric field perturbation directs ions into an area where the magnetic field rapidly decreases, and the ions depart the area of the high magnetic field and are directed through an evacuated tube 38, referred to herein as the extraction channel, to exit the yoke of the cyclotron. A magnetic regenerator may be used to change the magnetic field perturbation to direct the ions. The ions exiting the cyclotron will tend to disperse as they enter the area of markedly decreased magnetic field that exists in the room around the cyclotron. Beam shaping elements 107, 109 in the extraction channel 38 redirect the ions so that they stay in a straight beam of limited spatial extent.
The magnetic field within the pole gap needs to have certain properties to maintain the beam within the evacuated chamber as it accelerates. The magnetic field index n, which is shown below,
n=−(r/B)dB/dr,
should be kept positive to maintain this “weak” focusing. Here r is the radius of the beam and B is the magnetic field. Additionally, in some implementations, the field index needs to be maintained below 0.2, because at this value the periodicity of radial oscillations and vertical oscillations of the beam coincide in a vr=2 vz resonance. The betatron frequencies are defined by vr=(1−n)1/2 and vz=n1/2. The ferromagnetic pole face is designed to shape the magnetic field generated by the coils so that the field index n is maintained positive and less than 0.2 in the smallest diameter consistent with a 250 MeV beam in the given magnetic field.
As the beam exits the extraction channel it is passed through a beam formation system 125 (
During operation, the plates absorb energy from the applied radio frequency field as a result of conductive resistance along the surfaces of the plates. This energy appears as heat and is removed from the plates using water cooling lines 108 that release the heat in a heat exchanger 113 (
Stray magnetic fields exiting from the cyclotron are limited by both the pillbox magnet yoke (which also serves as a shield) and a separate magnetic shield 114. The separate magnetic shield includes of a layer 117 of ferromagnetic material (e.g., steel or iron) that encloses the pillbox yoke, separated by a space 116. This configuration that includes a sandwich of a yoke, a space, and a shield achieves adequate shielding for a given leakage magnetic field at lower weight.
As mentioned, the gantry allows the synchrocyclotron to be rotated about the horizontal rotational axis 532. The truss structure 516 has two generally parallel spans 580, 582. The synchrocyclotron is cradled between the spans about midway between the legs. The gantry is balanced for rotation about the bearings using counterweights 122, 124 mounted on ends of the legs opposite the truss.
The gantry is driven to rotate by an electric motor mounted to one or both of the gantry legs and connected to the bearing housings by drive gears. The rotational position of the gantry is derived from signals provided by shaft angle encoders incorporated into the gantry drive motors and the drive gears.
At the location at which the ion beam exits the cyclotron, the beam formation system 125 acts on the ion beam to give it properties suitable for patient treatment. For example, the beam may be spread and its depth of penetration varied to provide uniform radiation across a given target volume. The beam formation system can include passive scattering elements as well as active scanning elements.
All of the active systems of the synchrocyclotron (the current driven superconducting coils, the RF-driven plates, the vacuum pumps for the vacuum acceleration chamber and for the superconducting coil cooling chamber, the current driven particle source, the hydrogen gas source, and the RF plate coolers, for example), may be controlled by appropriate synchrocyclotron control electronics (not shown), which may include, e.g., one or more computers programmed with appropriate programs to effect control.
The control of the gantry, the patient support, the active beam shaping elements, and the synchrocyclotron to perform a therapy session is achieved by appropriate therapy control electronics (not shown).
As shown in
Referring to
In system 602 of
Referring also to
Applicator 610 and synchrocyclotron 604 may move relative to patient support 606 (and thus the patient) and relative to one another. For example, movement of applicator 610 may substantially coincide with rotation of gantry 605, or one may follow the other, so that the output of synchrocyclotron 604 aligns to the input of applicator 610.
Gantry 605 (and thus synchrocyclotron 604) is rotatable relative to the patient in the directions of arrow 615. Applicator 610 is movable along inner gantry 601 in the directions of arrow 616.
Patient support 606 is movable relative to inner gantry 601, thereby enabling the patient to be moved such that a top part 621 of inner gantry 601 is above the patient, and such that a bottom part 622 of inner gantry 601 is below the patient. Movement of patient support 606, along with movement of gantry 605 and applicator 610, enables relatively precise targeting of tumors and/or other treatment areas on the patient.
Structural weldment 617 may be constructed of any rigid material, such as metal, plastic, or the like, which is capable of supporting the weight of applicator 610. In this example, structural weldment 617 is substantially C-shaped (thereby defining the shape of inner gantry 601). It is noted, however, that structural weldment 617 may have other shapes. For example, it may be elongated or compressed. Basically, structural weldment may have any shape that enables relatively unobstructed, continuous travel of applicator 610 between positions that are above and below the patient.
Structural weldment 617 includes one or more bearing rails 618. The number of rails that may be used depends upon the connection required to applicator 610. Applicator 610 moves along bearing rail 618 between a top part 621 of structural weldment 617 and a bottom part 622 of structural weldment 617. The movement may be continuous or in discrete increments and may be stopped at any point along bearing rail 618 in order to obtain a desired position of applicator 610 relative to the position of the patient.
Cover 614 covers what would otherwise be an open hole to the area below floor 612 (see
Applicator 610 includes extension drive 619 and theta drive 620. Extension drive 619 moves aperture 625 towards, and away from, the patent, e.g., along arrow 626. By virtue of this movement, extension drive may modify the projection of the aperture 625 on the patient. For example, the size of the aperture may be increased or decreased. The shape of the aperture may be altered as well, e.g., between a circular shape, an oval shape, a polygonal shape, etc. Theta drive 620 moves applicator 610 along rail 618 between top part 621 and bottom part 622 of structural weldment 617. Cover 614 may travel along with applicator 610.
All or part of extension drive 619 and theta drive 620 may be computer-controlled. For example, extension drive 619 and/or theta drive 620 may be controlled by the same hardware and/or software that is used to control gantry 605.
The aperture described herein may be controlled so that its size and/or shape is modified. For example, the size of the aperture may be increased or decreased. The shape of the aperture may be altered as well, e.g., between a circular shape, an oval shape, a polygonal shape, etc.
An aperture, such as those described above, may be positioned and/or controlled manually. For example, a stand (not shown) may be used to hold the aperture. The aperture may be sized and/or shaped and placed on the stand. Both the stand and the aperture may be positioned relative to the patent and in line with the particle beam provided by the synchrocyclotron. Any mechanism to hold the aperture may be used. In some implementations, the aperture and/or device used to hold the aperture may be mounted to the synchrocyclotron itself.
The inner gantry is advantageous in that it reduces the precision with which the outer gantry must rotate. For example, the inner gantry allows sub-millimeter beam positioning. Because of the additional precision added by the inner gantry, the outer gantry need not provide sub-millimeter precision, but rather its precision may be at, or greater than, a millimeter. The outer gantry also need not be as large as would otherwise be required in order to obtain high levels of precision.
Additional information concerning the design of the particle accelerator described herein can be found in U.S. Provisional Application No. 60/760,788, entitled “High-Field Superconducting Synchrocyclotron” and filed Jan. 20, 2006; U.S. patent application Ser. No. 11/463,402, entitled “Magnet Structure For Particle Acceleration” and filed Aug. 9, 2006; and U.S. Provisional Application No. 60/850,565, entitled “Cryogenic Vacuum Break Pneumatic Thermal Coupler” and filed Oct. 10, 2006, all of which are incorporated herein by reference.
Further details regarding an example implementation of the foregoing system may be found in U.S. Pat. No. 7,728,311, filed on Nov. 16, 2006 and entitled “Charged Particle Radiation Therapy”. The contents of U.S. Pat. No. 7,728,311 are hereby incorporated by reference into this disclosure. In some implementations, the synchrocyclotron may be a variable-energy device, such as that described in U.S. patent application Ser. No. 13/916,401, filed on Jun. 12, 2013, the contents of which are incorporated herein by reference.
Referring to
An example of a PIG geometry particle source 700 that may be used in synchrocyclotron 10 is shown in
When the magnetic field is high, it can become difficult to impart enough energy to a particle so that it has a large enough radius of curvature to clear the physical housing of the particle source on its initial turn(s) during acceleration. The magnetic field is relatively high in the region of the particle source, e.g., on the order of 2 Tesla (T) or more (e.g., 4 T, 5 T, 6 T, 8 T, 8.8 T, 8.9 T, 9 T, 10.5 T, or more). As a result of this relatively high magnetic field, the initial particle-to-ion-source radius is relatively small for low energy particles, where low energy particles include particles that are first drawn from the plasma column. For example, such a radius may be on the order of 1 mm. Because the radii are so small, at least initially, some particles may come into contact with the particle source's housing area, thereby preventing further outward acceleration of such particles. Accordingly, the housing of particle source 700 is interrupted, or separated to form two parts, as shown in
In the synchrocyclotron described herein, a particle beam is extracted using a resonant extraction system. That is, the amplitude of radial oscillations of the beam are increased by a magnetic perturbation inside the accelerator, which is in resonance with these oscillations. When a resonant extraction system is used, extraction efficiency is improved by limiting the phase space extent of the internal beam. With attention to the design of the magnetic and RF field generating structures, the phase space extent of the beam at extraction is determined by the phase space extent at the beginning of acceleration (e.g., at emergence from the particle source). As a result, relatively little beam may be lost at the entrance to the extraction channel and background radiation from the accelerator can be reduced.
Cathodes 717 may be “cold” cathodes. A cold cathode may be a cathode that is not heated by an external heat source. Also, the cathodes may be pulsed, meaning that they output plasma burst(s) periodically rather than continuously. The duration during which a plasma burst is output is referred to herein as the ion (or particle) source pulse width. When the cathodes are cold, and are pulsed, the cathodes are less subject to wear and can therefore last relatively long. Furthermore, pulsing the cathodes can eliminate the need to water-cool the cathodes. In one implementation, cathodes 717 pulse at a relatively high voltage, e.g., about 1 kV to about 4 kV, and moderate peak cathode discharge currents of about 50 mA to about 200 mA at a duty cycle between about 0.1% and about 1% or 2% at repetition rates between about 200 Hz to about 1 KHz. However, the particle source is not limited to these values.
In more detail, a particle beam orbit approaches and interacts with regenerator 802. As a result of the increased magnetic field, the particle beam turns a bit more there and, instead of being circular, it precesses to the extraction channel.
Referring to
In order to reach the exit point, the particle beam should have the appropriate amount of energy. The amount of energy required to reach that point may vary based, e.g., on the size of the accelerator and the length of the extraction channel (in this example, the extraction channel is about 1.7 or 2 meters in length). In this regard, at least part of extraction channel 803 is above the superconducting coil. As such, the magnetic field in the extraction channel changes little in response to accelerator rotation. Accordingly, the amount of energy needed for a particle beam to traverse the extraction channel does not change appreciably in response to the rotation of the particle accelerator.
The superconducting coil moves during rotation of the gantry. Orbits that are affected by regenerator 802 change due to gravitational movement of the coil. This movement can be as little as tenths of millimeters. Nevertheless, as a result, the energy of the particle beam that enters the extraction channel may be different from the energy required to traverse the entire channel. To adjust for this change in the energy of particles entering the extraction channel, a structure 815 may be placed inside, or at the entry point to, extraction channel 803. The structure may be used to absorb excess energy in the particle beam. In this example, structure 815 is a rotatable, variable-thickness wedge, which may have a wheel-like shape. An example of structure 815 is shown in
The structure may be moved (e.g., rotated) to absorb an appropriate amount of energy from a particle beam in/entering the extraction channel. In this implementation, thicker parts 815a of the structure absorb more energy than thinner parts 815b. Accordingly, the structure may be moved (e.g., rotated) to absorb different amounts of energy in a particle beam. In some implementations, the structure may have a part containing no material (e.g., a “zero” thickness), which allows the particle beam to pass unaltered. Alternatively, in such cases, the structure may be moved entirely or partly out of the beam path. In some implementations, the maximum thickness may be on the order of centimeters; however, the maximum thickness will vary from system-to-system based, e.g., on energy absorbing requirements.
The structure may be made of any appropriate material that is capable of absorbing energy in a particle beam. As noted above, ideally, the structure minimizes scattering of the particle beam in the extraction channel; however, in practice, there may be amounts of scatter that are present and that are tolerable. As described in more detail below, in some implementations, adjustments may be made to elements of the particle therapy system that account for this scatter. Examples of materials that may be used for the structure include, but are not limited to, beryllium, plastic containing hydrogen, and carbon. These materials may be used alone, in combination, or in combination with other materials.
The movement (e.g., rotation) of the structure may be computer-controlled using a control system that is part of the broader particle therapy system. Computer control may include generating one or more control signals to control movement of mechanical devices, such as actuators and motors that produce the motion. The rotation of structure 815 may be controlled based on a rotational position of the particle accelerator, as measured by the rotational position of the gantry (see, e.g.,
Downstream from (e.g., after) the extraction channel, various devices are used to affect the particle beam output. One such device is configured to spread-out Bragg peaks of the particle beam to achieve a substantially uniform particle beam dose at a range of depths within the patient. As described in wikipedia.org, “[w]hen a fast charged particle moves through matter, it ionizes atoms of the material and deposits a dose along its path. A peak occurs because the interaction cross section increases as the charged particle's energy decreases.” “The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of ionizing radiation during its travel through matter. For protons . . . the peak occurs immediately before the particles come to rest.”
To achieve a relatively uniform dose of particle therapy at a range of depths, a modulator device is configured to move Bragg peaks of the particle beam along the graph of
In some implementations, the modulator device used to spread-out the Bragg peaks is a structure, such as a modulator wheel, having different thicknesses at different locations along its circumference. Accordingly, the modulator wheel is rotatable relative to the particle beam in order to provide the appropriate particle intensity for a particular depth and area.
The modulator wheel may have constant, substantially constant, or variable rotation in order to provide the appropriate Bragg peak spreading for a prescription. In some implementations, the particle therapy system may include more than one modulator wheel of the type shown in
The modulator wheels may be switchable into, or out of, the beam path, as noted above. For example, the modulator wheels may be movable along a rail, and motor-controlled so that they can be moved into, or out of, the beam path. In other implementations, the rail may be below the beam path, and an appropriate modulator wheel may be positioned proximate the beam path, and thereafter moved into the beam path through another motor or other control system.
The modulator wheels may be designed to provide uniform spread-out Bragg peaks from a maximum depth to the surface of a patient (e.g., to the outer layer of the patient's skin). To customize the depth of dosage, Bragg peaks in undesired locations (e.g., in area 917 in
Ion source pulse width also has an effect on spread-out Bragg peak uniformity. As background, the amount of time that a particle source is intermittently (e.g., periodically) activated is varied, thereby providing the plasma column for different periods of time and enabling extraction of different numbers of particles. For example, if the pulse width is increased, the number of particles extracted increases and, if the pulse width decreases, the number of particles extracted decreases. In some implementations, there is a linear relationship between the time that the particle source is on and the intensity of the particle beam. For example, the relationship may be one-to-one plus an offset. In an example implementation, the particle source may be pulsed within a frequency window that occurs during a frequency sweep between a maximum frequency of about 135 MHz and a minimum frequency of about 95 MHz or 90 MHz. For example, the particle source may be pulsed between 132 MHz and 131 MHz for a period of time. In an implementation, this period of time is about 40 μs; however, these values may vary or be different in other implementations. Failing to pulse the particle source outside of the frequency window can inhibit extraction of particles from the plasma column.
Ion source pulse widths may be adjustable in order to achieve substantial uniformity in spread-out Bragg peaks. In this regard, various factors, such as particle beam intensity, may contribute to the depth at which Bragg peaks penetrate a patient. A selected modulator wheel can produce different Bragg curves for different depths. For example,
As shown in
Variations in pulse-width can be determined by obtaining the appropriate pulse widths at the beginning and ending of a Bragg peak, and linearly interpolating between the two to obtain variations in between. Other processes also may be used, as described below. To increase or decrease an overall dose, all pulse widths may be increased or decreased by a specified factor.
Referring to
An absorber 957 may be arranged proximate to the scatterer and may be used to absorb beam energy, e.g., so as to reduce its penetration depth. The absorber may be made of plastic or other material. For example, if the beam is to penetrate 10 cm less, then 10 cm of plastic may be used. The absorber may be a wheel having different thicknesses. The appropriate thickness can be dialed into the particle beam path based on the depth specified in the prescription. A motor or other mechanism may control the wheel. In other implementations, the particle therapy system may include multiple absorbers, which may be switched into, or out of, the path of the particle beam. The absorbers may be switched into, or out of, the path of the particle beam using mechanism such as those described above for switching modulator wheels into, or out of, the path of the particle beam.
Downstream of absorber 957 is an ionization chamber 958 used for determining a total dose of particles provided during a treatment. In some implementations, the ionization chamber includes parallel planes of conductive material (e.g., gold vapor deposited on Kapton film). In operation, a voltage is applied to the parallel planes. Protons ionize the air between the parallel plates and, as a result, charge accumulates on the parallel plates. The amount of charge is proportional to the amount of protons. When the amount of charge exceeds a certain level, current is output, which triggers a counter. The ionization chamber and counter are calibrated so that a click of the counter corresponds to a specified dose (in grays) of particle beam. A control mechanism (e.g., circuitry, a computing device, or the like) keeps track of the dose based on clicks from the counter. When that dose exceeds a prescribed amount, the particle beam is turned-off (e.g., by turning-off the RF source, turning-off the ion source, or turning-off both).
Downstream of ionization chamber 958 is an aperture 960, such as aperture 635 described above. As shown in
In the example implementations described herein, a prescription specifies the following: particle dose, particle dose rate, patient position, patient couch rotational angle, gantry rotational angle, beam field size, beam depth, an extent of the beam depth, a configuration of an aperture used to limit the area of the particle beam, and a configuration of a bolus. In other implementations, a prescription need not include all of these characteristics and may include other or different operational characteristics of a treatment or diagnostic system.
The prescription may be transmitted in DICOM RT ION format. A control system, which may be part of the particle therapy system described herein, receives a file containing the prescription, interprets the contents of the file, and configures the particle therapy system in accordance with the prescription. The control system may include one or more processing devices and/or other electronics, programmable logic, etc. that is configured to provide input/output (I/O) to various subsystems of the particle therapy system to perform configuration processes. The following explains example configuration processes for the various operational characteristics specified in the foregoing example prescription.
The prescription may specify the dose of particles to be provided to the patient. The dose may be may controlled using ionization chamber 958 described above. That is, the particle beam is initially turned-on. A control mechanism (e.g., circuitry or a computing device) keeps track of the dose based on clicks from the counter that is triggered by output from the ionization chamber. When the dose exceeds the prescribed amount, the particle beam is turned-off (e.g., by turning-off the RF source, turning-off the ion source, or turning-off both). The particle beam may be turned-on or turned-off to increase or decrease the dose, respectively.
In some cases, the dose may be dependent on the beam field size (cross-sectional area). In an implementation, there may be three different scatterers to produce three different beam field sizes. In other implementations, this may not be the case or there may be a different number of scatterers. Each scatterer may be associated with a different coefficient A, B, C, which is multiplied by the number of clicks registered by a particle beam produced with a corresponding scatterer. For example, the coefficient for A may be 10,000, the coefficient for B may be 40,000, and the coefficient for C may be 7500. When the number of clicks times the appropriate coefficient reaches an appropriate threshold, the beam is turned-off. Values for scatterer coefficients other than those noted above may be used.
The prescription may specify the dose rate for particles to be provided to the patient. The dose rate, in this context, corresponds to the dose provided across a range of depths within the patient (e.g., to the shape of a spread-out Bragg peak). In this regard, the particle therapy system sets a nominal ion source pulse width for a nominal dose rate having a given beam field size. As described above with respect to
In some implementations, structure 815 (
The prescription may specify the patient position, as defined by the location of the couch on which the patient lies. In some implementations, the couch position is specified in terms of Cartesian X, Y and Z coordinates. The control system may receive these coordinates, and control one or more motors or other movement mechanisms to put the couch in the appropriate XYZ position. The prescription may also specify the rotational position (ϕ) of the couch. In this regard, the couch is rotatable relative to a predefined plane (e.g., the XY plane). ϕ indicates the amount of the rotation for the couch relative to that plane.
The prescription may specify the rotational position of the gantry. This is specified in the prescription via an angle θ. In this regard, the gantry (on which the particle accelerator is mounted) may be rotated around an axis to a point at which treatment is to be applied, as described above. The control system identifies this rotational position (θ) in the prescription, and moves the gantry accordingly.
The prescription may specify the beam field size (e.g., the cross-sectional area of the particle beam to be applied to the patient). In some implementations, the cross-sectional area of the particle beam is circular. In other implementations, the cross-sectional area of the particle beam may have other shapes, e.g., oval, rectangular, and so forth. In any case, the beam field size may be specified in terms of XY coordinates. The control system receives these XY coordinates and controls the beam field size by selecting an appropriate scatterer (e.g., 956) to place in the beam's path. As described above, different scatterers produce different beam field sizes. In this regard, various scatterers may be positioned on a tray that is movable relative to a beam path so as to position a particular scatterer in the beam path. In an implementation, the tray includes three separate scatterers and a hole (which can be filled with another device). In other implementations, there may be more or less selectable scatterers.
In some implementations, the particle beam may hit the scatterer off-center depending upon the gantry angle. This may be caused by scattering produced by structure 815. Accordingly, the position of the scatterer may be controlled, e.g., in accordance with the prescription, so that the particle beam hits the center of, close to the center of, or any other appropriate location on the scatterer. Moving the scatterer in this manner can reduce unexpected disparities in beam field size.
The prescription may specify a depth to which the particle beam is to penetrate the patient. The depth may be controlled, at least in part, by incorporating one or more beam absorbers into the beam path (e.g., as part of the scatterer). For example, as described above, an absorber 957 may be plastic, and may have a thickness that is linearly related to the amount by which the penetration depth is to be decreased. For example, if the penetration depth is to be decreased by 10 cm, then the absorber may have a uniform 10 cm thickness. As noted above, the absorber may be a wheel having different thicknesses. The appropriate thickness can be dialed into the particle beam path based on the depth specified in the prescription. A motor or other mechanism may control the wheel. In other implementations, a different structure and movement mechanism may be used.
The specified depth may also require selection of an appropriate modulator wheel. More specifically, as explained above, each modulator wheel is configured to provide a range of Bragg peak depths. As described above, linear interpolation may be used to determine the variations in pulse widths that may be used to correct spread-out Bragg peaks at different depths. In other implementations, pulse widths may be adjusted as follows. As noted above,
In some implementations, the pulse width and corresponding rotation angle of the modulator wheel is determined for Bragg peaks half-way (at e) between a deepest depth at a and a design depth at b, and half-way (at d) between a shallowest depth c and a design depth b. Relationships between pulse width and rotation angle are determined for those half-way points. And, an appropriate pulse-width adjustment curve b, d or e (
Accordingly, to summarize, LUTs that specify a depth to which the particle beam is to penetrate the patient may provide information indicating which modulator wheel to select, which absorber to use, and which BCM file to use.
The prescription may specify the extent of the depth into the patient (e.g., the length of the spread-out Bragg peak within the patient). More specifically, as indicated above, each modulator wheel may be designed to provide uniform spread-out Bragg peaks from a maximum depth to the surface of a patient (e.g., to the outer layer of the patient's skin). To customize the depth of dosage, Bragg peaks in undesired locations (e.g., in area 917 in
The prescription may specify a particular shape of the particle beam. The shape may be controlled by selecting an appropriate aperture, through which the particle beam is to pass. The aperture may be selected and mounted automatically (e.g., using motors, robots, or the like) or manually.
The prescription may specify a distal shape of a tumor to be treated with particle therapy. The shape may be irregular, and may inherently specify a variable depth of the particle beam. As described above, a bolus may be manufactured and installed, either manually or automatically, to provide maximum particle beam depths that correspond to the distal shape of the tumor.
As described above, the movement (e.g., rotation) of the structure may be computer-controlled using a control system that is part of the broader particle therapy system. Computer control may include generating one or more control signals to control movement of mechanical devices, such as actuators and motors that produce the motion. The rotation of structure 815 may be controlled based on a rotational position of the particle accelerator, as measured by the rotational position of the gantry (see, e.g.,
In this regard, the effects of gravity can affect the consistency of the particle beam across different angles. For example, the gantry rotates the particle accelerator around the patient. As a result, the accelerator must deliver the particle beam from different angles. The different effects of gravity at these angles can cause the particle beam to have different properties at the different angles. In the example systems described herein, the control system computer may be programmed to account for the effects of gravity, and to make adjustments to the system to counteract these effects. For example, in an implementation, a set of parameters may be set (e.g., in a look-up table that is part of, or not part of, the prescription) that are specified for each rotational angle of the gantry. The control system computer may determine a current angle of the gantry, read parameters from the table corresponding to that angle, and make appropriate adjustments based on those parameters.
In an example implementation, the look-up table includes parameters for angular increments of ten degrees, e.g., for gantry angles of 10°, 20°, 30°, 40°, and so forth. For gantry angles in between these ten-degree increments, the control computer system may interpolate between parameters values for angles above and below the in-between gantry angle. In some implementations, the angular increments may be less than ten degrees, e.g., the angular increments may be one degree, two degrees, five degrees, and so forth.
In some implementations, the parameters that are gantry dependent, and that may be included in one or more look-up tables (or other constructs) to vary with gantry angle include, but are not limited to: the rotation of structure 815 (a “microabsorber wheel”), a magnet current offset appropriate for a given angle, an ion (beam) current offset appropriate for a given angle, a particle pulse-width for a given angle (e.g., the width/duration of a pulse of particles from the ion source), a frequency amplitude modulation table for a given angle, position values for a steering coil at the output of the accelerator to direct the particle beam to the patient, and coil positions, including main coils and any active return coils.
In some implementations, the control system computer uses an open-loop correction process and, in other implementations, the control system computer uses a closed-loop correction process. In an example open-loop correction process, the control system computer obtains a parameter from the look-up table for a particular angle, and performs operations to set the system at the obtained parameter. For example, the system may obtain a magnet current for a given gantry angle, and output a signal to send the appropriate amount of current to the magnet. In an example closed-loop correction process, the control system computer obtains a parameter for the look-up table, determines a current value corresponding to the parameter, and makes appropriate adjustments until the current value reaches the obtained value. For example, a feedback system and/or feedback circuitry may be used to measure the current value and adjustments to that value, and the control system computer may continue making adjustments until the appropriate value for the parameter is achieved.
In some implementations, the particle therapy system includes a scanning system at the output of the particle accelerator. In this regard, referring to
In an example operation, scanning magnet 1008 is controllable in two dimensions (e.g., Cartesian XY dimensions) to direct the particle beam across a part (e.g., a cross-section) of an irradiation target. Ion chamber 1009 detects the dosage of the beam and feeds-back that information to a control system. Energy degrader 1010 is controllable to move material into, and out of, the path of the particle beam to change the energy of the particle beam and therefore the depth to which the particle beam will penetrate the irradiation target.
In this example, ion chamber 1009 detects dosage applied by the particle beam by detecting the numbers of ion pairs created within a gas caused by incident radiation. The numbers of ion pairs correspond to the dosage provided by the particle beam. That information is fed-back to a computer system that controls operation of the particle therapy system. The computer system (not shown), which may include memory and one or more processing devices, determines if the dosage detected by ion chamber is the intended dose. If the dosage is not as intended, the computer system may control the accelerator to interrupt production and/or output of the particle beam, and/or control the scanning magnet to prevent output of the particle beam to the irradiation target.
One or more of the plates is movable into, or out of, the beam path to thereby affect the energy of the particle beam and, thus, the depth of penetration of the particle beam within the irradiation target. For example, the more plates that are moved into the path of the particle beam, the more energy that will be absorbed by the plates, and the less energy the particle beam will have. Conversely, the fewer plates that are moved into the path of the particle beam, the less energy that will be absorbed by the plates, and the more energy the particle beam will have. Higher energy particle beams penetrate deeper into the irradiation target than do lower energy particle beams. In this context, “higher” and “lower” are meant as relative terms, and do not have any specific numeric connotations.
Plates are moved physically into, and out of, the path of the particle beam. For example, as shown in
In some implementations, a treatment plan is established prior to treating the irradiation target using scanning. The treatment plan may specify how scanning is to be performed for a particular irradiation target. In some implementations, the treatment plan specifies the following information: a type of scanning (e.g., spot scanning or raster scanning); scan locations (e.g., locations of spots to be scanned); magnet current per scan location; dosage-per-spot; locations (e.g., depths) of irradiation target cross-sections; particle beam energy per cross-section; plates or other types of pieces to move into the beam path for each particle beam energy; and so forth. Generally, spot scanning involves applying irradiation at discrete spots on an irradiation target and raster scanning involves moving a radiation spot across the radiation target. The concept of spot size therefore applies for both raster and spot scanning.
Any components of the scanning system, including those described above, may be affected by gravity resulting from movement of the accelerator. Accordingly, any or all of the foregoing components of the scanning system may be controlled to compensate for the effects of gravity. In this regard, the range modulator does not typically rotate with the accelerator; however, in systems where it does, the range modulator may be controlled as well. Both open-loop and closed-loop control may be used to compensate for the effects of gravity on the scanning system. Parameters associated with the scanning system may be incorporated into the look-up table and obtained by the control computer as described above.
Configuration of the particle therapy system in accordance with a prescription may be computer-controlled. Computer controls may be effected through one or more signals output from one or more computers to various electronics on, or associated with, the particle therapy system. In this regard, all or part of the configuration processes implemented by the control system and their various modifications (hereinafter referred to as “the processes”) can be implemented, at least in part, via a computer program product, i.e., a computer program tangibly embodied in one or more information carriers, e.g., in one or more tangible, non-transitory machine-readable storage media, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers
A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a network.
Actions associated with implementing the processes can be performed by one or more programmable processors executing one or more computer programs to perform the functions of the calibration process. All or part of the processes can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only storage area or a random access storage area or both. Elements of a computer (including a server) include one or more processors for executing instructions and one or more storage area devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from, or transfer data to, or both, one or more machine-readable storage media, such as mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Machine-readable storage media suitable for embodying computer program instructions and data include all forms of non-volatile storage area, including by way of example, semiconductor storage area devices, e.g., EPROM, EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
Any two more of the foregoing implementations may be used in an appropriate combination to affect the energy of a particle beam in the extraction channel. Likewise, individual features of any two more of the foregoing implementations may be used in an appropriate combination for the same purpose.
Elements of different implementations described herein may be combined to form other implementations not specifically set forth above. Elements may be left out of the processes, systems, apparatus, etc., described herein without adversely affecting their operation. Various separate elements may be combined into one or more individual elements to perform the functions described herein.
The example implementations described herein are not limited to use with a particle therapy system or to use with the example particle therapy systems described herein.
Additional information concerning the design of an example implementation of a particle accelerator that may be used in a system as described herein can be found in U.S. Provisional Application No. 60/760,788, entitled “High-Field Superconducting Synchrocyclotron” and filed Jan. 20, 2006; U.S. patent application Ser. No. 11/463,402, entitled “Magnet Structure For Particle Acceleration” and filed Aug. 9, 2006; and U.S. Provisional Application No. 60/850,565, entitled “Cryogenic Vacuum Break Pneumatic Thermal Coupler” and filed Oct. 10, 2006, all of which are incorporated herein by reference.
The following applications are incorporated by reference into the subject application: the U.S. Provisional Application entitled “CONTROLLING INTENSITY OF A PARTICLE BEAM” (Application No. 61/707,466), the U.S. Provisional Application entitled “ADJUSTING ENERGY OF A PARTICLE BEAM” (Application No. 61/707,515), the U.S. Provisional Application entitled “ADJUSTING COIL POSITION” (Application No. 61/707,548), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER” (Application No. 61/707,572), the U.S. Provisional Application entitled “MAGNETIC FIELD REGENERATOR” (Application No. 61/707,590), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM” (Application No. 61/707,704), the U.S. Provisional Application entitled “CONTROLLING PARTICLE THERAPY (Application No. 61/707,624), and the U.S. Provisional Application entitled “CONTROL SYSTEM FOR A PARTICLE ACCELERATOR” (Application No. 61/707,645).
The following are also incorporated by reference into the subject application: U.S. Pat. No. 7,728,311 which issued on Jun. 1, 2010, U.S. patent application Ser. No. 11/948,359 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 12/275,103 which was filed on Nov. 20, 2008, U.S. patent application Ser. No. 11/948,662 which was filed on Nov. 30, 2007, U.S. Provisional Application No. 60/991,454 which was filed on Nov. 30, 2007, U.S. Pat. No. 8,003,964 which issued on Aug. 23, 2011, U.S. Pat. No. 7,208,748 which issued on Apr. 24, 2007, U.S. Pat. No. 7,402,963 which issued on Jul. 22, 2008, U.S. patent application Ser. No. 13/148,000 filed Feb. 9, 2010, U.S. patent application Ser. No. 11/937,573 filed on Nov. 9, 2007, U.S. patent application Ser. No. 11/187,633, titled “A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron,” filed Jul. 21, 2005, U.S. Provisional Application No. 60/590,089, filed on Jul. 21, 2004, U.S. patent application Ser. No. 10/949,734, titled “A Programmable Particle Scatterer for Radiation Therapy Beam Formation”, filed Sep. 24, 2004, and U.S. Provisional Application No. 60/590,088, filed Jul. 21, 2005.
Any features of the subject application may be combined with one or more appropriate features of the following: the U.S. Provisional Application entitled “CONTROLLING INTENSITY OF A PARTICLE BEAM” (Application No. 61/707,466), the U.S. Provisional Application entitled “ADJUSTING ENERGY OF A PARTICLE BEAM” (Application No. 61/707,515), the U.S. Provisional Application entitled “ADJUSTING COIL POSITION” (Application No. 61/707,548), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER” (Application No. 61/707,572), the U.S. Provisional Application entitled “MAGNETIC FIELD REGENERATOR” (Application No. 61/707,590), the U.S. Provisional Application entitled “FOCUSING A PARTICLE BEAM” (Application No. 61/707,704), the U.S. Provisional Application entitled “CONTROLLING PARTICLE THERAPY (Application No. 61/707,624), and the U.S. Provisional Application entitled “CONTROL SYSTEM FOR A PARTICLE ACCELERATOR” (Application No. 61/707,645), U.S. Pat. No. 7,728,311 which issued on Jun. 1, 2010, U.S. patent application Ser. No. 11/948,359 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 12/275,103 which was filed on Nov. 20, 2008, U.S. patent application Ser. No. 11/948,662 which was filed on Nov. 30, 2007, U.S. Provisional Application No. 60/991,454 which was filed on Nov. 30, 2007, U.S. patent application Ser. No. 13/907,601, which was filed on May 31, 2013, U.S. patent application Ser. No. 13/916,401, filed on Jun. 12, 2013, U.S. Pat. No. 8,003,964 which issued on Aug. 23, 2011, U.S. Pat. No. 7,208,748 which issued on Apr. 24, 2007, U.S. Pat. No. 7,402,963 which issued on Jul. 22, 2008, U.S. patent application Ser. No. 13/148,000 filed Feb. 9, 2010, U.S. patent application Ser. No. 11/937,573 filed on Nov. 9, 2007, U.S. patent application Ser. No. 11/187,633, titled “A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron,” filed Jul. 21, 2005, U.S. Provisional Application No. 60/590,089, filed on Jul. 21, 2004, U.S. patent application Ser. No. 10/949,734, titled “A Programmable Particle Scatterer for Radiation Therapy Beam Formation”, filed Sep. 24, 2004, and U.S. Provisional Application No. 60/590,088, filed Jul. 21, 2005.
Except for the provisional application from which this patent application claims priority and the documents incorporated by reference above, no other documents are incorporated by reference into this patent application.
Other implementations not specifically described herein are also within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/038,888, which was filed on Sep. 27, 2013. Priority is hereby claimed to U.S. patent application Ser. No. 14/038,888. Priority is also claimed to U.S. Provisional Application No. 61/707,624, which was filed on Sep. 28, 2012. The contents of U.S. Provisional Application No. 61/707,624 are hereby incorporated by reference into this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
498915 | Heimann | Jun 1893 | A |
2280606 | Roberts | Apr 1942 | A |
2492324 | Salisbury | Dec 1949 | A |
2615129 | McMillan | Oct 1952 | A |
2616042 | Ray | Oct 1952 | A |
2626351 | Powell | Jan 1953 | A |
2659000 | Salisbury | Nov 1953 | A |
2701304 | Dickinson | Feb 1955 | A |
2789222 | Martin et al. | Apr 1957 | A |
2812463 | Teng et al. | Nov 1957 | A |
2958327 | Geissmann | Nov 1960 | A |
3024379 | Verster | Mar 1962 | A |
3175131 | Burleigh et al. | Mar 1965 | A |
3432721 | Naydan et al. | Mar 1969 | A |
3582650 | Avery | Jun 1971 | A |
3679899 | Dimeff | Jul 1972 | A |
3689847 | Frederick | Sep 1972 | A |
3757118 | Hodge et al. | Sep 1973 | A |
3868522 | Bigham et al. | Feb 1975 | A |
3883761 | Hendry | May 1975 | A |
3886367 | Castle, Jr. | May 1975 | A |
3925676 | Bigham et al. | Dec 1975 | A |
3955089 | McIntyre et al. | May 1976 | A |
3958327 | Marancik et al. | May 1976 | A |
3992625 | Schmidt et al. | Nov 1976 | A |
4038622 | Purcell | Jul 1977 | A |
4047068 | Ress et al. | Sep 1977 | A |
4095201 | Kervizic et al. | Jun 1978 | A |
4112306 | Nunan | Sep 1978 | A |
4129784 | Tschunt et al. | Dec 1978 | A |
4139777 | Rautenbach | Feb 1979 | A |
4197510 | Szu | Apr 1980 | A |
4220866 | Taumann et al. | Sep 1980 | A |
4230129 | LeVeen | Oct 1980 | A |
4256966 | Heinz | Mar 1981 | A |
4293772 | Stieber | Oct 1981 | A |
4336505 | Meyer | Jun 1982 | A |
4342060 | Gibson | Jul 1982 | A |
4345210 | Tran | Aug 1982 | A |
4353033 | Karasawa | Oct 1982 | A |
4425506 | Brown et al. | Jan 1984 | A |
4490616 | Cipollina et al. | Dec 1984 | A |
4507614 | Prono et al. | Mar 1985 | A |
4507616 | Blosser et al. | Mar 1985 | A |
4589126 | Augustsson et al. | May 1986 | A |
4598208 | Brunelli et al. | Jul 1986 | A |
4628523 | Heflin | Dec 1986 | A |
4633125 | Blosser et al. | Dec 1986 | A |
4641057 | Blosser et al. | Feb 1987 | A |
4641104 | Blosser et al. | Feb 1987 | A |
4651007 | Perusek et al. | Mar 1987 | A |
4680565 | Jahnke | Jul 1987 | A |
4705955 | Mileikowsky | Nov 1987 | A |
4710722 | Jahnke | Dec 1987 | A |
4726046 | Nunan | Feb 1988 | A |
4734653 | Jahnke | Mar 1988 | A |
4737727 | Yamada et al. | Apr 1988 | A |
4739173 | Blosser et al. | Apr 1988 | A |
4745367 | Dustmann et al. | May 1988 | A |
4754147 | Maughan et al. | Jun 1988 | A |
4763483 | Olsen | Aug 1988 | A |
4767930 | Stieber et al. | Aug 1988 | A |
4769623 | Marsing et al. | Sep 1988 | A |
4771208 | Jongen et al. | Sep 1988 | A |
4783634 | Yamamoto et al. | Nov 1988 | A |
4808941 | Marsing | Feb 1989 | A |
4812658 | Koehler | Mar 1989 | A |
4843333 | Marsing et al. | Jun 1989 | A |
4845371 | Stieber | Jul 1989 | A |
4865284 | Gosis et al. | Sep 1989 | A |
4868843 | Nunan | Sep 1989 | A |
4868844 | Nunan | Sep 1989 | A |
4870287 | Cole et al. | Sep 1989 | A |
4880985 | Jones | Nov 1989 | A |
4894541 | Ono | Jan 1990 | A |
4896206 | Denham | Jan 1990 | A |
4902993 | Krevet | Feb 1990 | A |
4904949 | Wilson | Feb 1990 | A |
4905267 | Miller et al. | Feb 1990 | A |
4917344 | Prechter et al. | Apr 1990 | A |
4943781 | Wilson et al. | Jul 1990 | A |
4945478 | Merickel et al. | Jul 1990 | A |
4968915 | Wilson et al. | Nov 1990 | A |
4987309 | Klasen et al. | Jan 1991 | A |
4992744 | Fujita et al. | Feb 1991 | A |
4996496 | Kitamura et al. | Feb 1991 | A |
5006759 | Krispel | Apr 1991 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5012111 | Ueda | Apr 1991 | A |
5017789 | Young et al. | May 1991 | A |
5017882 | Finlan | May 1991 | A |
5036290 | Sonobe et al. | Jul 1991 | A |
5039057 | Prechter et al. | Aug 1991 | A |
5039867 | Nishihara et al. | Aug 1991 | A |
5046078 | Hernandez et al. | Sep 1991 | A |
5072123 | Johnsen | Dec 1991 | A |
5111042 | Sullivan et al. | May 1992 | A |
5111173 | Matsuda et al. | May 1992 | A |
5117194 | Nakanishi et al. | May 1992 | A |
5117212 | Yamamoto et al. | May 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5148032 | Hernandez | Sep 1992 | A |
5166531 | Huntzinger | Nov 1992 | A |
5189687 | Bova et al. | Feb 1993 | A |
5191706 | Cosden | Mar 1993 | A |
5240218 | Dye | Aug 1993 | A |
5260579 | Yasuda et al. | Nov 1993 | A |
5260581 | Lesyna et al. | Nov 1993 | A |
5278533 | Kawaguchi | Jan 1994 | A |
5285166 | Hiramoto et al. | Feb 1994 | A |
5317164 | Kurokawa | May 1994 | A |
5336891 | Crewe | Aug 1994 | A |
5341104 | Anton et al. | Aug 1994 | A |
5349198 | Takanaka | Sep 1994 | A |
5365742 | Boffito et al. | Nov 1994 | A |
5374913 | Pissantezky et al. | Dec 1994 | A |
5382914 | Hamm et al. | Jan 1995 | A |
5401973 | McKeown et al. | Mar 1995 | A |
5405235 | Lebre et al. | Apr 1995 | A |
5434420 | McKeown et al. | Jul 1995 | A |
5440133 | Moyers et al. | Aug 1995 | A |
5451794 | McKeown et al. | Sep 1995 | A |
5461773 | Kawaguchi | Oct 1995 | A |
5463291 | Carroll et al. | Oct 1995 | A |
5464411 | Schulte et al. | Nov 1995 | A |
5492922 | Palkowitz | Feb 1996 | A |
5511549 | Legg et al. | Apr 1996 | A |
5521469 | Laisne | May 1996 | A |
5538942 | Koyama et al. | Jul 1996 | A |
5549616 | Schulte et al. | Aug 1996 | A |
5561697 | Takafuji et al. | Oct 1996 | A |
5585642 | Britton et al. | Dec 1996 | A |
5633747 | Nikoonahad | May 1997 | A |
5635721 | Bardi et al. | Jun 1997 | A |
5668371 | Deasy et al. | Sep 1997 | A |
5672878 | Yao | Sep 1997 | A |
5691679 | Ackermann et al. | Nov 1997 | A |
5717371 | Crow | Feb 1998 | A |
5726448 | Smith et al. | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5730745 | Schulte et al. | Mar 1998 | A |
5751781 | Brown et al. | May 1998 | A |
5778047 | Mansfield et al. | Jul 1998 | A |
5783914 | Hiramoto et al. | Jul 1998 | A |
5784431 | Kalend et al. | Jul 1998 | A |
5797924 | Schulte et al. | Aug 1998 | A |
5811944 | Sampayan et al. | Sep 1998 | A |
5818058 | Nakanishi et al. | Oct 1998 | A |
5821705 | Caporaso et al. | Oct 1998 | A |
5825845 | Blair et al. | Oct 1998 | A |
5841237 | Alton | Nov 1998 | A |
5846043 | Spath | Dec 1998 | A |
5851182 | Sahadevan | Dec 1998 | A |
5866912 | Slater et al. | Feb 1999 | A |
5874811 | Finlan et al. | Feb 1999 | A |
5895926 | Britton et al. | Apr 1999 | A |
5920601 | Nigg et al. | Jul 1999 | A |
5929458 | Nemezawa et al. | Jul 1999 | A |
5963615 | Egley et al. | Oct 1999 | A |
5993373 | Nonaka et al. | Nov 1999 | A |
6008499 | Hiramoto et al. | Dec 1999 | A |
6034377 | Pu | Mar 2000 | A |
6057655 | Jongen | May 2000 | A |
6061426 | Linders et al. | May 2000 | A |
6064807 | Arai et al. | May 2000 | A |
6066851 | Madono et al. | May 2000 | A |
6080992 | Nonaka et al. | Jun 2000 | A |
6087670 | Hiramoto et al. | Jul 2000 | A |
6094760 | Nonaka et al. | Aug 2000 | A |
6118848 | Reiffel | Sep 2000 | A |
6140021 | Nakasuji et al. | Oct 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6158708 | Egley et al. | Dec 2000 | A |
6207952 | Kan et al. | Mar 2001 | B1 |
6219403 | Nishihara | Apr 2001 | B1 |
6222905 | Yoda et al. | Apr 2001 | B1 |
6241671 | Ritter et al. | Jun 2001 | B1 |
6246066 | Yuehu | Jun 2001 | B1 |
6256591 | Yoda et al. | Jul 2001 | B1 |
6265837 | Akiyama et al. | Jul 2001 | B1 |
6268610 | Pu | Jul 2001 | B1 |
6278239 | Caporaso et al. | Aug 2001 | B1 |
6279579 | Riaziat et al. | Aug 2001 | B1 |
6307914 | Kunieda et al. | Oct 2001 | B1 |
6316776 | Hiramoto et al. | Nov 2001 | B1 |
6366021 | Meddaugh et al. | Apr 2002 | B1 |
6369585 | Yao | Apr 2002 | B2 |
6380545 | Yan | Apr 2002 | B1 |
6407505 | Bertsche | Jun 2002 | B1 |
6417634 | Bergstrom | Jul 2002 | B1 |
6433336 | Jongen et al. | Aug 2002 | B1 |
6433349 | Akiyama et al. | Aug 2002 | B2 |
6433494 | Kulish et al. | Aug 2002 | B1 |
6441569 | Janzow | Aug 2002 | B1 |
6443349 | Van Der Burg | Sep 2002 | B1 |
6465957 | Whitham et al. | Oct 2002 | B1 |
6472834 | Hiramoto et al. | Oct 2002 | B2 |
6476403 | Dolinskii et al. | Nov 2002 | B1 |
6492922 | New | Dec 2002 | B1 |
6493424 | Whitham | Dec 2002 | B2 |
6498444 | Hanna et al. | Dec 2002 | B1 |
6501961 | Kirkpatrick | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6519316 | Collins | Feb 2003 | B1 |
6593696 | Ding et al. | Jul 2003 | B2 |
6594336 | Nishizawa et al. | Jul 2003 | B2 |
6600164 | Badura et al. | Jul 2003 | B1 |
6617598 | Matsuda | Sep 2003 | B1 |
6621889 | Mostafavi | Sep 2003 | B1 |
6639234 | Badura et al. | Oct 2003 | B1 |
6646383 | Bertsche et al. | Nov 2003 | B2 |
6670618 | Hartmann et al. | Dec 2003 | B1 |
6683318 | Haberer et al. | Jan 2004 | B1 |
6683426 | Kleeven | Jan 2004 | B1 |
6693283 | Eickhoff et al. | Feb 2004 | B2 |
6710362 | Kraft et al. | Mar 2004 | B2 |
6713773 | Lyons et al. | Mar 2004 | B1 |
6713976 | Zumoto et al. | Mar 2004 | B1 |
6717162 | Jongen | Apr 2004 | B1 |
6736831 | Hartmann et al. | May 2004 | B1 |
6745072 | Badura et al. | Jun 2004 | B1 |
6769806 | Moyers | Aug 2004 | B2 |
6774383 | Norimine et al. | Aug 2004 | B2 |
6777689 | Nelson | Aug 2004 | B2 |
6777700 | Yanagisawa et al. | Aug 2004 | B2 |
6780149 | Schulte | Aug 2004 | B1 |
6794868 | Wong et al. | Sep 2004 | B1 |
6799068 | Hartmann et al. | Sep 2004 | B1 |
6800866 | Amemiya et al. | Oct 2004 | B2 |
6803591 | Muramatsu et al. | Oct 2004 | B2 |
6814694 | Pedroni | Nov 2004 | B1 |
6822244 | Beloussov et al. | Nov 2004 | B2 |
6853142 | Chistyakov | Feb 2005 | B2 |
6853703 | Svatos et al. | Feb 2005 | B2 |
6864770 | Nemoto et al. | Mar 2005 | B2 |
6865254 | Nafstadius | Mar 2005 | B2 |
6873123 | Marchand et al. | Mar 2005 | B2 |
6891177 | Kraft et al. | May 2005 | B1 |
6891924 | Yoda et al. | May 2005 | B1 |
6894300 | Reimoser et al. | May 2005 | B2 |
6897451 | Kaercher et al. | May 2005 | B2 |
6914396 | Symons et al. | Jul 2005 | B1 |
6936832 | Norimine et al. | Aug 2005 | B2 |
6953943 | Yanagisawa et al. | Oct 2005 | B2 |
6965116 | Wagner et al. | Nov 2005 | B1 |
6969194 | Nafstadius | Nov 2005 | B1 |
6979832 | Yanagisawa et al. | Dec 2005 | B2 |
6984835 | Harada | Jan 2006 | B2 |
6992312 | Yanagisawa et al. | Jan 2006 | B2 |
6993112 | Hesse | Jan 2006 | B2 |
7008105 | Amann et al. | Mar 2006 | B2 |
7011447 | Moyers | Mar 2006 | B2 |
7012267 | Moriyama et al. | Mar 2006 | B2 |
7014361 | Ein-Gal | Mar 2006 | B1 |
7026636 | Yanagisawa et al. | Apr 2006 | B2 |
7038403 | Mastrangeli et al. | May 2006 | B2 |
7041479 | Swartz et al. | May 2006 | B2 |
7045781 | Adamec et al. | May 2006 | B2 |
7049613 | Yanagisawa et al. | May 2006 | B2 |
7053389 | Yanagisawa et al. | May 2006 | B2 |
7054801 | Sakamoto et al. | May 2006 | B2 |
7060997 | Norimine et al. | Jun 2006 | B2 |
7071479 | Yanagisawa et al. | Jul 2006 | B2 |
7073508 | Moyers | Jul 2006 | B2 |
7081619 | Bashkirov et al. | Jul 2006 | B2 |
7084410 | Beloussov et al. | Aug 2006 | B2 |
7091478 | Haberer | Aug 2006 | B2 |
7102144 | Matsuda et al. | Sep 2006 | B2 |
7122811 | Matsuda et al. | Oct 2006 | B2 |
7122966 | Norling et al. | Oct 2006 | B2 |
7122978 | Nakanishi et al. | Oct 2006 | B2 |
7135678 | Wang et al. | Nov 2006 | B2 |
7138771 | Bechthold et al. | Nov 2006 | B2 |
7154107 | Yanagisawa et al. | Dec 2006 | B2 |
7154108 | Tadokoro et al. | Dec 2006 | B2 |
7154991 | Earnst et al. | Dec 2006 | B2 |
7162005 | Bjorkholm | Jan 2007 | B2 |
7173264 | Moriyama et al. | Feb 2007 | B2 |
7173265 | Miller et al. | Feb 2007 | B2 |
7173385 | Caporaso et al. | Feb 2007 | B2 |
7186991 | Kato et al. | Mar 2007 | B2 |
7193227 | Hiramoto et al. | Mar 2007 | B2 |
7199382 | Rigney et al. | Apr 2007 | B2 |
7208748 | Sliski et al. | Apr 2007 | B2 |
7212608 | Nagamine et al. | May 2007 | B2 |
7212609 | Nagamine et al. | May 2007 | B2 |
7221733 | Takai et al. | May 2007 | B1 |
7227161 | Matsuda et al. | Jun 2007 | B2 |
7247869 | Tadokoro et al. | Jul 2007 | B2 |
7257191 | Sommer | Aug 2007 | B2 |
7259529 | Tanaka | Aug 2007 | B2 |
7262424 | Moriyama et al. | Aug 2007 | B2 |
7262565 | Fujisawa | Aug 2007 | B2 |
7274018 | Adamec et al. | Sep 2007 | B2 |
7280633 | Cheng et al. | Oct 2007 | B2 |
7295649 | Johnsen | Nov 2007 | B2 |
7297967 | Yanagisawa et al. | Nov 2007 | B2 |
7301162 | Matsuda et al. | Nov 2007 | B2 |
7307264 | Brusasco et al. | Dec 2007 | B2 |
7318805 | Schweikard et al. | Jan 2008 | B2 |
7319231 | Moriyama et al. | Jan 2008 | B2 |
7319336 | Baur et al. | Jan 2008 | B2 |
7331713 | Moyers | Feb 2008 | B2 |
7332880 | Ina et al. | Feb 2008 | B2 |
7345291 | Kats | Mar 2008 | B2 |
7345292 | Moriyama et al. | Mar 2008 | B2 |
7348557 | Armit | Mar 2008 | B2 |
7348579 | Pedroni | Mar 2008 | B2 |
7351988 | Naumann et al. | Apr 2008 | B2 |
7355189 | Yanagisawa et al. | Apr 2008 | B2 |
7368740 | Beloussov et al. | May 2008 | B2 |
7372053 | Yamashita et al. | May 2008 | B2 |
7378672 | Harada | May 2008 | B2 |
7381979 | Yamashita et al. | Jun 2008 | B2 |
7397054 | Natori et al. | Jul 2008 | B2 |
7397901 | Johnsen | Jul 2008 | B1 |
7398309 | Baumann et al. | Jul 2008 | B2 |
7402822 | Guertin et al. | Jul 2008 | B2 |
7402823 | Guertin et al. | Jul 2008 | B2 |
7402824 | Guertin et al. | Jul 2008 | B2 |
7402963 | Sliski et al. | Jul 2008 | B2 |
7405407 | Hiramoto et al. | Jul 2008 | B2 |
7425717 | Matsuda et al. | Sep 2008 | B2 |
7432516 | Peggs et al. | Oct 2008 | B2 |
7439528 | Nishiuchi et al. | Oct 2008 | B2 |
7446328 | Rigney et al. | Nov 2008 | B2 |
7446490 | Jongen et al. | Nov 2008 | B2 |
7449701 | Fujimaki et al. | Nov 2008 | B2 |
7453076 | Welch et al. | Nov 2008 | B2 |
7465944 | Ueno et al. | Dec 2008 | B2 |
7466085 | Nutt | Dec 2008 | B2 |
7468506 | Rogers et al. | Dec 2008 | B2 |
7473913 | Hermann et al. | Jan 2009 | B2 |
7476867 | Fritsch et al. | Jan 2009 | B2 |
7476883 | Nutt | Jan 2009 | B2 |
7482606 | Groezinger et al. | Jan 2009 | B2 |
7492556 | Atkins et al. | Feb 2009 | B2 |
7507975 | Mohr | Mar 2009 | B2 |
7525104 | Harada | Apr 2009 | B2 |
7541905 | Antaya | Jun 2009 | B2 |
7547901 | Guertin et al. | Jun 2009 | B2 |
7554096 | Ward et al. | Jun 2009 | B2 |
7554097 | Ward et al. | Jun 2009 | B2 |
7555103 | Johnsen | Jun 2009 | B2 |
7557358 | Ward et al. | Jul 2009 | B2 |
7557359 | Ward et al. | Jul 2009 | B2 |
7557360 | Ward et al. | Jul 2009 | B2 |
7557361 | Ward et al. | Jul 2009 | B2 |
7560715 | Pedroni | Jul 2009 | B2 |
7560717 | Matsuda et al. | Jul 2009 | B2 |
7567694 | Lu et al. | Jul 2009 | B2 |
7574251 | Lu et al. | Aug 2009 | B2 |
7576499 | Caporaso et al. | Aug 2009 | B2 |
7579603 | Birgy et al. | Aug 2009 | B2 |
7579610 | Grozinger et al. | Aug 2009 | B2 |
7582866 | Furuhashi et al. | Sep 2009 | B2 |
7582885 | Katagiri et al. | Sep 2009 | B2 |
7582886 | Trbojevic | Sep 2009 | B2 |
7586112 | Chiba et al. | Sep 2009 | B2 |
7598497 | Yamamoto et al. | Oct 2009 | B2 |
7609009 | Tanaka et al. | Oct 2009 | B2 |
7609809 | Kapatoes et al. | Oct 2009 | B2 |
7609811 | Siljamaki et al. | Oct 2009 | B1 |
7615942 | Sanders et al. | Nov 2009 | B2 |
7626347 | Sliski et al. | Dec 2009 | B2 |
7629598 | Harada | Dec 2009 | B2 |
7639853 | Olivera et al. | Dec 2009 | B2 |
7639854 | Schnarr et al. | Dec 2009 | B2 |
7643661 | Ruchala et al. | Jan 2010 | B2 |
7656258 | Antaya et al. | Feb 2010 | B1 |
7659521 | Pedroni | Feb 2010 | B2 |
7659528 | Uematsu | Feb 2010 | B2 |
7668291 | Nord et al. | Feb 2010 | B2 |
7672429 | Urano et al. | Mar 2010 | B2 |
7679073 | Urano et al. | Mar 2010 | B2 |
7682078 | Rietzel | Mar 2010 | B2 |
7692166 | Muraki et al. | Apr 2010 | B2 |
7692168 | Moriyama et al. | Apr 2010 | B2 |
7696499 | Miller et al. | Apr 2010 | B2 |
7696847 | Antaya | Apr 2010 | B2 |
7701677 | Schultz et al. | Apr 2010 | B2 |
7709818 | Matsuda et al. | May 2010 | B2 |
7710051 | Caporaso et al. | May 2010 | B2 |
7718982 | Sliski et al. | May 2010 | B2 |
7728311 | Gall | Jun 2010 | B2 |
7746978 | Cheng et al. | Jun 2010 | B2 |
7755305 | Umezawa et al. | Jul 2010 | B2 |
7759642 | Nir | Jul 2010 | B2 |
7763867 | Birgy et al. | Jul 2010 | B2 |
7767988 | Kaiser et al. | Aug 2010 | B2 |
7770231 | Prater et al. | Aug 2010 | B2 |
7772577 | Saito et al. | Aug 2010 | B2 |
7773723 | Nord et al. | Aug 2010 | B2 |
7773788 | Lu et al. | Aug 2010 | B2 |
7778488 | Nord et al. | Aug 2010 | B2 |
7783010 | Clayton | Aug 2010 | B2 |
7784127 | Kuro et al. | Aug 2010 | B2 |
7786451 | Ward et al. | Aug 2010 | B2 |
7786452 | Ward et al. | Aug 2010 | B2 |
7789560 | Moyers | Sep 2010 | B2 |
7791051 | Beloussov et al. | Sep 2010 | B2 |
7796731 | Nord et al. | Sep 2010 | B2 |
7801269 | Cravens et al. | Sep 2010 | B2 |
7801270 | Nord et al. | Sep 2010 | B2 |
7801988 | Baumann et al. | Sep 2010 | B2 |
7807982 | Nishiuchi et al. | Oct 2010 | B2 |
7809107 | Nord et al. | Oct 2010 | B2 |
7812319 | Diehl et al. | Oct 2010 | B2 |
7812326 | Grozinger et al. | Oct 2010 | B2 |
7816657 | Hansmann et al. | Oct 2010 | B2 |
7817778 | Nord et al. | Oct 2010 | B2 |
7817836 | Chao et al. | Oct 2010 | B2 |
7834334 | Grozinger et al. | Nov 2010 | B2 |
7834336 | Boeh et al. | Nov 2010 | B2 |
7835494 | Nord et al. | Nov 2010 | B2 |
7835502 | Spence et al. | Nov 2010 | B2 |
7839972 | Ruchala et al. | Nov 2010 | B2 |
7839973 | Nord et al. | Nov 2010 | B2 |
7848488 | Mansfield | Dec 2010 | B2 |
7857756 | Warren et al. | Dec 2010 | B2 |
7860216 | Jongen et al. | Dec 2010 | B2 |
7860550 | Saracen et al. | Dec 2010 | B2 |
7868301 | Diehl | Jan 2011 | B2 |
7875801 | Tsotsis | Jan 2011 | B2 |
7875861 | Huttenberger et al. | Jan 2011 | B2 |
7875868 | Moriyama et al. | Jan 2011 | B2 |
7881431 | Aoi et al. | Feb 2011 | B2 |
7894574 | Nord et al. | Feb 2011 | B1 |
7906769 | Blasche et al. | Mar 2011 | B2 |
7914734 | Livingston | Mar 2011 | B2 |
7919765 | Timmer | Apr 2011 | B2 |
7920040 | Antaya et al. | Apr 2011 | B2 |
7920675 | Lomax et al. | Apr 2011 | B2 |
7928415 | Bert et al. | Apr 2011 | B2 |
7934869 | Ivanov et al. | May 2011 | B2 |
7940881 | Jongen et al. | May 2011 | B2 |
7943913 | Balakin | May 2011 | B2 |
7947969 | Pu | May 2011 | B2 |
7949096 | Cheng et al. | May 2011 | B2 |
7950587 | Henson et al. | May 2011 | B2 |
7960710 | Kruip et al. | Jun 2011 | B2 |
7961844 | Takeda et al. | Jun 2011 | B2 |
7977648 | Westerly et al. | Jul 2011 | B2 |
7977656 | Fujimaki et al. | Jul 2011 | B2 |
7982198 | Nishiuchi et al. | Jul 2011 | B2 |
7982416 | Tanaka et al. | Jul 2011 | B2 |
7984715 | Moyers | Jul 2011 | B2 |
7986768 | Nord et al. | Jul 2011 | B2 |
7987053 | Schaffner | Jul 2011 | B2 |
7989785 | Emhofer et al. | Aug 2011 | B2 |
7990524 | Jureller et al. | Aug 2011 | B2 |
7997553 | Sloan et al. | Aug 2011 | B2 |
8002466 | Von Neubeck et al. | Aug 2011 | B2 |
8003964 | Stark et al. | Aug 2011 | B2 |
8009803 | Nord et al. | Aug 2011 | B2 |
8009804 | Siljamaki et al. | Aug 2011 | B2 |
8039822 | Rietzel | Oct 2011 | B2 |
8041006 | Boyden et al. | Oct 2011 | B2 |
8044364 | Yamamoto | Oct 2011 | B2 |
8049187 | Tachikawa | Nov 2011 | B2 |
8053508 | Korkut et al. | Nov 2011 | B2 |
8053739 | Rietzel | Nov 2011 | B2 |
8053745 | Moore | Nov 2011 | B2 |
8053746 | Timmer et al. | Nov 2011 | B2 |
8067748 | Balakin | Nov 2011 | B2 |
8069675 | Radovinsky et al. | Dec 2011 | B2 |
8071966 | Kaiser et al. | Dec 2011 | B2 |
8080801 | Safai | Dec 2011 | B2 |
8085899 | Nord et al. | Dec 2011 | B2 |
8089054 | Balakin | Jan 2012 | B2 |
8093564 | Balakin | Jan 2012 | B2 |
8093568 | Mackie et al. | Jan 2012 | B2 |
8111125 | Antaya et al. | Feb 2012 | B2 |
8129699 | Balakin | Mar 2012 | B2 |
8144832 | Balakin | Mar 2012 | B2 |
8153989 | Tachikawa et al. | Apr 2012 | B2 |
8173981 | Trbojevic | May 2012 | B2 |
8188688 | Balakin | May 2012 | B2 |
8198607 | Balakin | Jun 2012 | B2 |
8222613 | Tajiri et al. | Jul 2012 | B2 |
8227768 | Smick et al. | Jul 2012 | B2 |
8232536 | Harada | Jul 2012 | B2 |
8278634 | Vanderberg et al. | Oct 2012 | B2 |
8288742 | Balakin | Oct 2012 | B2 |
8291717 | Radovinsky et al. | Oct 2012 | B2 |
8294127 | Tachibana | Oct 2012 | B2 |
8304750 | Preikszas et al. | Nov 2012 | B2 |
8309941 | Balakin | Nov 2012 | B2 |
8330132 | Guertin et al. | Dec 2012 | B2 |
8334520 | Otaka et al. | Dec 2012 | B2 |
8335397 | Takane et al. | Dec 2012 | B2 |
8344340 | Gall et al. | Jan 2013 | B2 |
8350214 | Otaki et al. | Jan 2013 | B2 |
8368038 | Balakin | Feb 2013 | B2 |
8368043 | Havelange et al. | Feb 2013 | B2 |
8373143 | Balakin | Feb 2013 | B2 |
8373145 | Balakin | Feb 2013 | B2 |
8373146 | Balakin | Feb 2013 | B2 |
8378299 | Frosien | Feb 2013 | B2 |
8378321 | Balakin | Feb 2013 | B2 |
8382943 | Clark | Feb 2013 | B2 |
8389949 | Harada et al. | Mar 2013 | B2 |
8399866 | Balakin | Mar 2013 | B2 |
8405042 | Honda et al. | Mar 2013 | B2 |
8405056 | Amaldi et al. | Mar 2013 | B2 |
8415643 | Balakin | Apr 2013 | B2 |
8416918 | Nord et al. | Apr 2013 | B2 |
8421041 | Balakin | Apr 2013 | B2 |
8426833 | Trbojevic | Apr 2013 | B2 |
8436323 | Iseki et al. | May 2013 | B2 |
8440987 | Stephani et al. | May 2013 | B2 |
8445872 | Behrens et al. | May 2013 | B2 |
8466441 | Iwata et al. | Jun 2013 | B2 |
8472583 | Star-Lack et al. | Jun 2013 | B2 |
8483357 | Siljamaki et al. | Jul 2013 | B2 |
8487278 | Balakin | Jul 2013 | B2 |
8502173 | Vanderberg et al. | Aug 2013 | B2 |
8552406 | Phaneuf et al. | Oct 2013 | B2 |
8552408 | Hanawa et al. | Oct 2013 | B2 |
8569717 | Balakin | Oct 2013 | B2 |
8575563 | Cameron | Nov 2013 | B2 |
8581215 | Balakin | Nov 2013 | B2 |
8581523 | Gall et al. | Nov 2013 | B2 |
8614429 | Balakin | Dec 2013 | B2 |
8637833 | Balakin | Jan 2014 | B2 |
8643314 | Touchi | Feb 2014 | B2 |
8653314 | Pelati et al. | Feb 2014 | B2 |
8653473 | Yajima | Feb 2014 | B2 |
8710462 | Balakin | Apr 2014 | B2 |
8791435 | Balakin | Jul 2014 | B2 |
8791656 | Zwart et al. | Jul 2014 | B1 |
8901509 | Balakin | Dec 2014 | B2 |
8927950 | Gall et al. | Jan 2015 | B2 |
8963112 | Balakin | Feb 2015 | B1 |
8975816 | Scheitrum | Mar 2015 | B2 |
8975836 | Bromberg et al. | Mar 2015 | B2 |
9012866 | Benna | Apr 2015 | B2 |
9044600 | Balakin | Jun 2015 | B2 |
9056199 | Balakin | Jun 2015 | B2 |
9545528 | Gall et al. | Jan 2017 | B2 |
20020172317 | Maksimchuk et al. | Nov 2002 | A1 |
20030048080 | Amemiya et al. | Mar 2003 | A1 |
20030125622 | Schweikard et al. | Jul 2003 | A1 |
20030136924 | Kraft et al. | Jul 2003 | A1 |
20030152197 | Moyers | Aug 2003 | A1 |
20030163015 | Yanagisawa et al. | Aug 2003 | A1 |
20030183779 | Norimine et al. | Oct 2003 | A1 |
20030234369 | Glukhoy | Dec 2003 | A1 |
20040000650 | Yanagisawa et al. | Jan 2004 | A1 |
20040017888 | Seppi et al. | Jan 2004 | A1 |
20040056212 | Yanagisawa et al. | Mar 2004 | A1 |
20040061077 | Muramatsu et al. | Apr 2004 | A1 |
20040061078 | Muramatsu et al. | Apr 2004 | A1 |
20040085023 | Chistyakov | May 2004 | A1 |
20040098445 | Baumann et al. | May 2004 | A1 |
20040111134 | Muramatsu et al. | Jun 2004 | A1 |
20040118081 | Reimoser et al. | Jun 2004 | A1 |
20040149934 | Yanagisawa et al. | Aug 2004 | A1 |
20040159795 | Kaercher et al. | Aug 2004 | A1 |
20040173763 | Moriyama et al. | Sep 2004 | A1 |
20040174958 | Moriyama et al. | Sep 2004 | A1 |
20040183033 | Moriyama et al. | Sep 2004 | A1 |
20040183035 | Yanagisawa et al. | Sep 2004 | A1 |
20040200982 | Moriyama et al. | Oct 2004 | A1 |
20040200983 | Fujimaki et al. | Oct 2004 | A1 |
20040213381 | Harada | Oct 2004 | A1 |
20040227104 | Matsuda et al. | Nov 2004 | A1 |
20040232356 | Norimine et al. | Nov 2004 | A1 |
20040240626 | Moyers | Dec 2004 | A1 |
20050058245 | Ein-Gal | Mar 2005 | A1 |
20050089141 | Brown | Apr 2005 | A1 |
20050161618 | Pedroni | Jul 2005 | A1 |
20050184686 | Caporaso et al. | Aug 2005 | A1 |
20050228255 | Saracen et al. | Oct 2005 | A1 |
20050234327 | Saracen et al. | Oct 2005 | A1 |
20050247890 | Norimine et al. | Nov 2005 | A1 |
20060017015 | Sliski | Jan 2006 | A1 |
20060067468 | Rietzel | Mar 2006 | A1 |
20060126792 | Li | Jun 2006 | A1 |
20060145088 | Ma | Jul 2006 | A1 |
20060175991 | Fujisawa | Aug 2006 | A1 |
20060284562 | Hruby et al. | Dec 2006 | A1 |
20070001128 | Sliski et al. | Jan 2007 | A1 |
20070013273 | Albert et al. | Jan 2007 | A1 |
20070014654 | Haverfield et al. | Jan 2007 | A1 |
20070023699 | Yamashita et al. | Feb 2007 | A1 |
20070029510 | Hermann et al. | Feb 2007 | A1 |
20070051904 | Kaiser et al. | Mar 2007 | A1 |
20070092812 | Caporaso et al. | Apr 2007 | A1 |
20070114945 | Mattaboni et al. | May 2007 | A1 |
20070145916 | Caporaso | Jun 2007 | A1 |
20070171015 | Antaya | Jul 2007 | A1 |
20070181519 | Khoshnevis | Aug 2007 | A1 |
20070284548 | Kaiser et al. | Dec 2007 | A1 |
20080067452 | Moriyama et al. | Mar 2008 | A1 |
20080078937 | Tsuchiya et al. | Apr 2008 | A1 |
20080093567 | Gall | Apr 2008 | A1 |
20080218102 | Sliski et al. | Sep 2008 | A1 |
20090003524 | Pu | Jan 2009 | A1 |
20090096179 | Stark et al. | Apr 2009 | A1 |
20090140671 | O'Neal, III et al. | Jun 2009 | A1 |
20090140672 | Gall et al. | Jun 2009 | A1 |
20090200483 | Gall et al. | Aug 2009 | A1 |
20090314961 | Balakin | Dec 2009 | A1 |
20100045213 | Sliski et al. | Feb 2010 | A1 |
20100051833 | Guertin et al. | Mar 2010 | A1 |
20100060207 | Caporaso | Mar 2010 | A1 |
20100230617 | Gall | Sep 2010 | A1 |
20100308235 | Sliski et al. | Dec 2010 | A1 |
20110233423 | Balakin | Sep 2011 | A1 |
20110240874 | Iwata | Oct 2011 | A1 |
20110284760 | Balakin | Nov 2011 | A1 |
20110299919 | Stark et al. | Dec 2011 | A1 |
20120014501 | Pelc et al. | Jan 2012 | A1 |
20120019085 | Koga et al. | Jan 2012 | A1 |
20120142538 | Antaya et al. | Jun 2012 | A1 |
20130009571 | Antaya | Jan 2013 | A1 |
20130053616 | Gall et al. | Feb 2013 | A1 |
20130127375 | Sliski et al. | May 2013 | A1 |
20130131424 | Sliski et al. | May 2013 | A1 |
20130218009 | Balakin | Aug 2013 | A1 |
20130237425 | Leigh et al. | Sep 2013 | A1 |
20130249443 | Antaya et al. | Sep 2013 | A1 |
20140028200 | Van Wagoner et al. | Jan 2014 | A1 |
20140028220 | Bromberg et al. | Jan 2014 | A1 |
20140042934 | Tsutsui | Feb 2014 | A1 |
20140091734 | Gall et al. | Apr 2014 | A1 |
20140094371 | Zwart et al. | Apr 2014 | A1 |
20140094637 | Zwart et al. | Apr 2014 | A1 |
20140094638 | Gall et al. | Apr 2014 | A1 |
20140094639 | Zwart et al. | Apr 2014 | A1 |
20140094640 | Gall et al. | Apr 2014 | A1 |
20140094641 | Gall et al. | Apr 2014 | A1 |
20140094643 | Gall | Apr 2014 | A1 |
20140097920 | Goldie et al. | Apr 2014 | A1 |
20140320006 | Abs et al. | Oct 2014 | A1 |
20140371511 | Zwart et al. | Dec 2014 | A1 |
20150161793 | Takahashi | Jun 2015 | A1 |
20170014649 | Gall | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2629333 | May 2007 | CA |
1377521 | Oct 2002 | CN |
1537657 | Oct 2004 | CN |
1816243 | Aug 2006 | CN |
1988933 | Jun 2007 | CN |
101061759 | Oct 2007 | CN |
101361156 | Feb 2009 | CN |
101932361 | Dec 2010 | CN |
101933405 | Dec 2010 | CN |
101933406 | Dec 2010 | CN |
102214494 | Oct 2011 | CN |
104244562 | Dec 2014 | CN |
104812443 | Jul 2015 | CN |
104812444 | Jul 2015 | CN |
104822417 | Aug 2015 | CN |
2753397 | Jun 1978 | DE |
3148100 | Jun 1983 | DE |
3530446 | Mar 1986 | DE |
4101094 | May 1992 | DE |
4411171 | Oct 1995 | DE |
0194728 | Sep 1986 | EP |
0208163 | Jan 1987 | EP |
0221987 | May 1987 | EP |
0222786 | May 1987 | EP |
0276123 | Jul 1988 | EP |
0277521 | Aug 1988 | EP |
0306966 | Mar 1989 | EP |
0388123 | Sep 1990 | EP |
0465597 | Jan 1992 | EP |
0499253 | Aug 1992 | EP |
0776595 | Jun 1997 | EP |
0864337 | Sep 1998 | EP |
0911064 | Apr 1999 | EP |
1069809 | Jan 2001 | EP |
1153398 | Nov 2001 | EP |
1294445 | Mar 2003 | EP |
1348465 | Oct 2003 | EP |
1358908 | Nov 2003 | EP |
1371390 | Dec 2003 | EP |
1402923 | Mar 2004 | EP |
1430932 | Jun 2004 | EP |
1454653 | Sep 2004 | EP |
1454654 | Sep 2004 | EP |
1454655 | Sep 2004 | EP |
1454656 | Sep 2004 | EP |
1454657 | Sep 2004 | EP |
1477206 | Nov 2004 | EP |
1605742 | Dec 2005 | EP |
1738798 | Jan 2007 | EP |
1826778 | Aug 2007 | EP |
1949404 | Jul 2008 | EP |
2183753 | May 2010 | EP |
2227295 | Sep 2010 | EP |
2232961 | Sep 2010 | EP |
2232962 | Sep 2010 | EP |
2363170 | Sep 2011 | EP |
2363171 | Sep 2011 | EP |
2394498 | Dec 2011 | EP |
2814304 | Dec 2014 | EP |
2900324 | Aug 2015 | EP |
2900325 | Aug 2015 | EP |
2900326 | Aug 2015 | EP |
2560421 | Aug 1985 | FR |
2911843 | Aug 2008 | FR |
0957342 | May 1964 | GB |
1360085 | Jul 1974 | GB |
1485329 | Sep 1977 | GB |
2015821 | Sep 1979 | GB |
1583400 | Jan 1981 | GB |
2361523 | Oct 2001 | GB |
U48-108098 | Mar 1972 | JP |
S57-162527 | Oct 1982 | JP |
58-141000 | Aug 1983 | JP |
61-225798 | Oct 1986 | JP |
62-150804 | Jul 1987 | JP |
62-186500 | Aug 1987 | JP |
63-149344 | Jun 1988 | JP |
63-218200 | Sep 1988 | JP |
63-226899 | Sep 1988 | JP |
64-89621 | Apr 1989 | JP |
4-94198 | Mar 1992 | JP |
11-47287 | Feb 1999 | JP |
11-243295 | Sep 1999 | JP |
2000-243309 | Sep 2000 | JP |
2000-294399 | Oct 2000 | JP |
2001-6900 | Jan 2001 | JP |
2001-009050 | Jan 2001 | JP |
2001-129103 | May 2001 | JP |
01-276797 | Oct 2001 | JP |
01-302700 | Oct 2001 | JP |
2001-346893 | Dec 2001 | JP |
2002-164686 | Jun 2002 | JP |
2003-504628 | Feb 2003 | JP |
2003-517755 | May 2003 | JP |
2004-031115 | Jan 2004 | JP |
2005-526578 | Sep 2005 | JP |
06-036893 | Feb 2006 | JP |
2006-032282 | Feb 2006 | JP |
06-233831 | Sep 2006 | JP |
07-260939 | Oct 2007 | JP |
07-263196 | Oct 2007 | JP |
2007-319439 | Dec 2007 | JP |
2008-012121 | Jan 2008 | JP |
2008-507358 | Mar 2008 | JP |
2008-507826 | Mar 2008 | JP |
2008-089341 | Apr 2008 | JP |
04-128717 | Jul 2008 | JP |
08-173890 | Jul 2008 | JP |
04-129768 | Aug 2008 | JP |
08-264298 | Nov 2008 | JP |
2009-515671 | Apr 2009 | JP |
2009-516905 | Apr 2009 | JP |
04-273409 | Jun 2009 | JP |
09-162585 | Jul 2009 | JP |
04-337300 | Sep 2009 | JP |
43-23267 | Sep 2009 | JP |
10-071213 | Apr 2010 | JP |
2010-204020 | Sep 2010 | JP |
2010-536130 | Nov 2010 | JP |
2011-505191 | Feb 2011 | JP |
2011-505670 | Feb 2011 | JP |
2011-507151 | Mar 2011 | JP |
11-102800 | May 2011 | JP |
2011-521425 | Jul 2011 | JP |
2011-521721 | Jul 2011 | JP |
2011-224342 | Nov 2011 | JP |
05-046928 | Oct 2012 | JP |
05-341352 | Nov 2013 | JP |
61-80800 | Aug 2017 | JP |
300137 | Nov 1969 | RU |
569635 | Aug 1977 | RU |
200930160 | Jul 2009 | TW |
200934682 | Aug 2009 | TW |
200939908 | Sep 2009 | TW |
200940120 | Oct 2009 | TW |
201422278 | Jun 2014 | TW |
201422279 | Jun 2014 | TW |
201424466 | Jun 2014 | TW |
201429514 | Aug 2014 | TW |
201433331 | Sep 2014 | TW |
201434508 | Sep 2014 | TW |
201438787 | Oct 2014 | TW |
WO-8607229 | Dec 1986 | WO |
WO-9012413 | Oct 1990 | WO |
WO-9203028 | Feb 1992 | WO |
WO-9302536 | Feb 1993 | WO |
WO-9817342 | Apr 1998 | WO |
WO-199939385 | Aug 1999 | WO |
WO-0040064 | Jul 2000 | WO |
WO-0049624 | Aug 2000 | WO |
WO-0126230 | Apr 2001 | WO |
WO-01126569 | Apr 2001 | WO |
WO-0207817 | Jan 2002 | WO |
WO-03039212 | May 2003 | WO |
WO-03092812 | Nov 2003 | WO |
WO-2004026401 | Apr 2004 | WO |
WO-2004101070 | Nov 2004 | WO |
WO-2006012452 | Feb 2006 | WO |
WO-2006-012467 | Feb 2006 | WO |
WO-2007061937 | May 2007 | WO |
WO-2007084701 | Jul 2007 | WO |
WO-2007130164 | Nov 2007 | WO |
WO-2007145906 | Dec 2007 | WO |
WO-2008030911 | Mar 2008 | WO |
WO-2008081480 | Jul 2008 | WO |
WO-2009048745 | Apr 2009 | WO |
WO-2009070173 | Jun 2009 | WO |
WO-2009070588 | Jun 2009 | WO |
WO-2009073480 | Jun 2009 | WO |
WO-2009080080 | Jul 2009 | WO |
WO-2009142547 | Nov 2009 | WO |
WO-2010089574 | Aug 2010 | WO |
WO-2012044957 | Apr 2012 | WO |
WO-2012049085 | Apr 2012 | WO |
WO-2013079311 | Jun 2013 | WO |
WO-2013098089 | Jul 2013 | WO |
WO-2013142409 | Sep 2013 | WO |
WO-2014018706 | Jan 2014 | WO |
WO-2014018876 | Jan 2014 | WO |
WO-2014052708 | Apr 2014 | WO |
WO-2014052716 | Apr 2014 | WO |
WO-2014052718 | Apr 2014 | WO |
WO-2014052719 | Apr 2014 | WO |
WO-2014052722 | Apr 2014 | WO |
Entry |
---|
US 8,581,524, 11/2013, O'Neil et al. (withdrawn) |
Communication under Rule 164(2)(a) EPC for EP13783422.2, 3 pages (Jul. 28, 2017). |
Office Action in counterpart Chinese application No. 201380062102.X, dated Sep. 14, 2016 (Chinese language). |
Office Action in counterpart Chinese application No. 201380062102.X, dated Sep. 14, 2016 (English translation). |
Second Office Action (English Translation) for CN201380062102.X, 4 pages (dated May 10, 2017). |
Second Office Action (Chinese Translation) for CN201380062102.X, 3 pages (dated May 10, 2017). |
18th Japan Conference on Radiation and Radioisotopes [Japanese], Nov. 25-27, 1987, 9 pages. |
510(k) Summary: Ion Beam Applications S.A., FDA, Jul. 12, 2001, 5 pages. |
510(k) Summary: Optivus Proton Beam Therapy System, Jul. 21, 2000, 5 pages. |
Abrosimov et al., 1000MeV Proton Beam Therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron, Medical Radiology (Moscow) 32, 10 (1987) revised in Journal of Physics, Conference Series 41, 2006, pp. 424-432, Institute of Physics Publishing Limited. |
Abrosimov et al., Neutron Time-of-flight Spectrometer Gneis at the Gatchina 1 GeV Protron Syncrhocyclotron, Mar. 9, 1985 and revised form Jul. 31, 1985, Lemingrad Nuclear Physics Institute, Gatchina, 188350, USSR (15 pages). |
Adachi et al., A 150MeV FFAG Synchrotron with Return-Yoke Free Magent, Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001, 3 pages. |
Ageyev et al., The IHEP Accelerating and Storage Complex (UNK) Status Report, 11th International Conference on High-Energy Accelerators, 1980, pp. 60-70. |
Agosteo et al., Maze Design of a gantry room for proton therapy, Nuclear Instruments & Methods in Physics Research, 1996, Section A, 382, pp. 573-582. |
Alexeev et al., R4 Design of Superconducting Magents for Proton Synchrotrons, Proceedings of the Fifth International Cryogenic Engineering Conference, 197 4, pp. 531-533. |
Allardyce et al., Performance and Prospects of the Reconstructed CERN 600 MeV Synchrocyclotron, IEEE Transactions on Nuclear Science USA, Jun. 1977, ns-24:(3) 1631-1633. |
Alonso, Magnetically Scanned Ion Beams for Radiation Therapy, Accelerator & Fusion Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, Oct. 1988, 13 pages. |
Amaldi et al., The Italian project for a hadrontherapy centre Nuclear Instruments and Methods in Physics Research A, 1995, 360, pp. 297-301. |
Amaldi, Overview of the world landscape of Hadrontherapy and the projects of the TERA foundation, Physica Medica, An International journal Devoted to the Applications of Physics to Medicine and Biology, Jul. 1998, vol. XIV, Supplement 1, 6th Workshop on Heavy Charged Particles in Biology and Medicine, Instituto Scientific Europeo (ISE), Sep. 29-Oct. 1, 1977, Baveno, pp. 76-85. |
An Accelerated Collaboration Meets with Beaming Success, Lawrence Livermore National Laboratory, Apr. 12, 2006, S&TR, Livermore, California, pp. 1-3, http://www.llnl.gov/str/April06/Caporaso.html. |
Anferov et al., Status of the Midwest Proton Radiotherapy Institute, Proceedings of the 2003 Particle Accelerator Conference, 2003, pp. 699-701. |
Anferov et al., The Indiana University Midwest Proton Radiation Institute, Proceedings of the 2001 Particle Accelerator Conference, 2001, Chicago, pp. 645-647. |
Appun, Various problems of magnet fabrication for high-energy accelerators, Journal for All Engineers Interested in the Nuclear Field, 1967, 11 pp. 10-16 (1967) [Lang.: German], English bibliographic information (httn://www.osti.1mv/enernvcitations/nroduct.biblio.isn?ostiid=4442292). |
Arduini et al. Physical specifications of clinical proton beams from a synchrotron, Med. Phys, Jun. 1996, 23 ( 6): 939-951. |
Badano et al., Proton-Ion Medical Machine Study (PIMMS) Part I, PIMMS, Jan. 1999, 238 pages. |
Beam Delivery and Properties, Journal of the ICRU, 2007, 7(2):20 pages. |
Beeckman et al., Preliminary design of a reduced cost proton therapy facility using a compact, high field isochronous cyclotron, Nuclear Instruments and Methods in Physics Research B56/57, 1991, pp. 1201-1204. |
Bellomo et al., The Superconducting Cyclotron Program at Michigan State University, Bulletin of the American Physical Society, Sep. 1980, 25(7):767. |
Benedikt and Carli, Matching to Gantries for Medical Synchrotrons IEEE Proceedings of the 1997 Particle Accelerator Conference, 1997, pp. 13 79-13 81. |
Bieth et al., A Very Compact Protontherapy Facility Based on an Extensive Use of High Temperature Superconductors (HTS) Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, Jun. 14-19, 1998, pp. 669-672. |
Bigham, Magnetic Trim Rods for Superconducting Cyclotrons, Nuclear Instruments and Methods (North-Holland Publishing Co.), 1975, 141:223-228. |
Bimbot, First Studies of the External Beam from the Orsay S.C. 200 MeV, Institut de Physique Nucleaire, BP 1, Orsay, France, IEEE, 1979, pp. 1923-1926. |
Blackmore et al., Operation of the Triumf Proton Therapy Facility, IEEE Proceedings of the 1997 Particle Accelerator Conference, May 12-16, 1997, 3:3831-3833. |
Bloch, The Midwest Proton Therapy Center, Application of Accelerators in Research and Industry, Proceedings of the Fourteenth Int'l. Conf, Part Two, Nov. 1996, pp. 1253-1255. |
Blosser et al., A Compact Superconducting Cyclotron for the Production of High Intensity Protons, Proceedings of the 1997 Particle Accelerator Conference, May 12-16, 1997, 1:1054-1056. |
Blosser et al., Advances in Superconducting Cyclotrons at Michigan State University, Proceedings of the 11th International Conference on Cyclotrons and their Applications, Oct. 1986, pp. 157-167, Tokyo. |
Blosser et al., Characteristics of a 400 (Q2/A) MeV Super-Conducting Heavy-Ion Cyclotron, Bulletin of the American Physical Society, Oct. 1974, p. 1026. |
Blosser et al., Medical Accelerator Projects at Michigan State Univ. IEEE Proceedings of the 1989 Particle Accelerator Conference, Mar. 20-23, 1989, 2:742-746. |
Blosser et al., Problems and Accomplishments of Superconducting Cyclotrons, Proceedings of the 14th International Conference, Cyclotrons and Their Applications, Oct. 1995, pp. 674-684. |
Blosser et al., Progress toward an experiment to study the effect of RF grounding in an internal ion source on axial oscillations of the beam in a cyclotron, National Superconducting Cyclotron Laboratory, Michigan State University, Report MSUCL-760, CP600, Cyclotrons and their Applications 2011, Sixteenth International Conference, 2001, pp. 274-276. |
Blosser et al., Superconducting Cyclotron for Medical Application, IEEE Transactions on Magnetics, Mar. 1989, 25(2): 1746-1754. |
Blosser et al., Superconducting Cyclotrons, Seventh International Conference on Cyclotrons and their Applications, Aug. 19-22, 1975, pp. 584-594. |
Blosser, Application of Superconductivity in Cyclotron Construction, Ninth International Conference on Cyclotrons and their Applications, Sep. 1981, pp. 147-157. |
Blosser, Applications of Superconducting Cyclotrons, Twelfth International Conference on Cyclotrons and Their Applications, May 8-12, 1989, pp. 137-144. |
Blosser, Future Cyclotrons, AIP, The Sixth International Cyclotron Conference, 1972, pp. 16-32. |
Blosser, H., Present and Future Superconducting Cyclotrons, Bulletin of the American Physical Society, Feb. 1987, 32(2):171 Particle Accelerator Conference, Washington, D.C. |
Blosser, H.G., “Progress on the Coupled Superconducting Cyclotron Project,” Bulletin of the American Physical Society, vol. 26, No. 4, p. 558 (Apr. 1981). |
Blosser, H.G., Superconducting Cyclotrons at Michigan State University, Nuclear Instruments & Methods in Physics Research, 1987,vol. B 24/25, part II, pp. 752-756. |
Blosser, Medical Cyclotrons, Physics Today, Special Issue Physical Review Centenary, Oct. 1993, pp. 70-73. |
Blosser, Preliminary Design Study Exploring Building Features Required for a Proton Therapy Facility for the Ontario Cancer Institute, Mar. 1991, MSUCL-760a, 53 pages. |
Blosser, Synchrocyclotron Improvement Programs, IEEE Transactions on Nuclear Science USA, Jun. 1969, 16(3):Part I, pp. 405-414. |
Blosser, The Michigan State University Superconducting Cyclotron Program, Nuclear Science, Apr. 1979, NS-26(2):2040-2047. |
Botha et al., A New Multidisciplinary Separated-Sector Cyclotron Facility, IEEE Transactions on Nuclear Science, 1977, NS-24(3): 1118-1120. |
Chichili et al., Fabrication ofNb3Sn Shell-Type Coils with Pre-Preg Ceramic Insulation, American Institute of Physics Conference Proceedings, AIP USA, No. 711, (XP-002436709, ISSN: 0094-243X), 2004, pp. 450-457. |
Chong et al., Radiology Clinic North American 7, 3319, 1969, 27 pages. |
Chu et al., Instrumentation for Treatment of Cancer Using Proton and Light-ion Beams, Review of Scientific Instruments, Aug. 1993, 64 (8):2055-2122. |
Chu et al., Performance Specifications for Proton Medical Facility, Lawrence Berkeley Laboratory, University of California, Mar. 1993, 128 pages. |
Chu, Instrumentation in Medical Systems, Accelerator and Fusion Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, May 1995, 9 pages. |
Cohen, R. et al., Nevis Synchrocyclotron Conversion Project, IEEE Transactions on Nuclear Science, IEEE Service Center, New York, NY, US, vol. 16, No. 3, Jun. 1, 1969, pp. 421-425, XP011351570, ISSN: 0018-9499, DOI: 10.1109/TNS.1969.4325264 abstract; figures I-4a Chap. 1, p. 421-2; chap. 11 from p. 423, col. 2 to p. 425, col. 1. (5 pages). |
Cole et al., Design and Application of a Proton Therapy Accelerator, Fermi National Accelerator Laboratory, IEEE, 1985, 5 pages. |
Collins, et al., The Indiana University Proton Therapy System, Proceedings of EPAC 2006, Edinburgh, Scotland, 2006, 3 pages. |
Conradi et al., Proposed New Facilities for Proton Therapy at iThemba Labs, Proceedings of EPAC, 2002, pp. 560-562. |
C/E Source of Ions for Use in Sychro-Cyclotrons Search, Jan. 31, 2005, 9 pages. |
Source Search Cites of U.S. and Foreign Patents/Published applications in the name of Mitsubishi Denki Kabushiki Kaisha and Containing the Keywords (Proton and Synchrocyclotron), Jan. 2005, 8 pages. |
Cosgrove et al., Microdosimetric Studies on the Orsay Proton Synchrocyclotron at 73 and 200 MeV, Radiation Protection Dosimetry, 1997, 70(1-4):493-496. |
Coupland, High-field (5 T) pulsed superconducting dipole magnet, Proceedings of the Institution of Electrical Engineers, Jul. 1974, 121(7):771-778. |
Coutrakon et al. Proton Synchrotrons for Cancer Therapy, Application of Accelerators in Research and Industry—Sixteenth International Conf., American Institute of Physics, Nov. 1-5, 2000, vol. 576, pp. 861-864. |
Coutrakon et al., A prototype beam delivery system for the proton medical accelerator at Loma Linda, Medical Physics, Nov./Dec. 1991, 18(6):1093-1099. |
CPAC Highlights Its Proton Therapy Program at ESTRO Annual Meeting, TomoTherapy Incorporated, Sep. 18, 2008, Madison, Wisconsin, pp. 1-2. |
Cuttone, Applications of a Particle Accelerators in Medical Physics, Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, V.S. Sofia, 44 Cantania, Italy, Jan. 2010, 17 pages. |
Dahl P, Superconducting Magnet System, American Institute of Physics, AIP Conference Proceedings, 1987-1988, 2: 1329-1376. |
Decision of Rejection (English translation) for JP2015-534733, 10 pages (Mar. 6, 2017). |
Decision of Rejection (Japanese translation) for JP2015-534733, 3 pages (Mar. 6, 2017). |
Dey, M.K., et al., Coil Centering for the Kolkata Superconducting Cyclotron Magnet, Cyclotrons and their applications, Proceedings, 18th International Conference, Cyclotrons 2007, Giardini Naxo, Italy, Oct. 1-5, 2007 (3 pages). |
Dialog Search, Jan. 31, 2005, 17 pages. |
Dugan et al., Tevatron Status IEEE, Particle Accelerator Conference, Accelerator Science & Technology, 1989, pp. 426-430. |
Eickhoff et al., The Proposed Accelerator Facility for Light Ion Cancer Therapy in Heidelberg, Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, pp. 2513-2515. |
Elo, Don, et al., Mechanical Design of Regenerative Deflector for the Berkeley 88-Inch Cyclotron, Proceedings of the International Conference on Isochronous Cyclotrons, Gatlinburg, Tennessee, Aug. 1966 (7 pages). |
Enchevich et al., Minimizing Phase Losses in the 680 MeV Synchrocyclotron by Correcting the Accelerating Voltage Amplitude, Atomnaya Energiya, 1969, 26:(3):315-316. |
Endo et al., Compact Proton and Carbon Ion Synchrotrons for Radiation Therapy, Proceedings of EPAC 2002, Paris France, 2002, pp. 2733-2735. |
European Communication from European application No. 13774886.9 dated Jun. 12, 2015 (2 pages). |
European Communication issued in European application No. 13783422.2 dated Jun. 12, 2015 (2 pages). |
Flanz et al., Large Medical Gantries, Particle Accelerator Conference, Massachusetts General Hospital, 1995, pp. 1-5. |
Flanz et al., Operation of a Cyclotron Based Proton Therapy Facility, Massachusetts General Hospital, Boston, MA 02114, pp. 1-4, retrieved from Internet in 2009. |
Flanz et al., The Northeast Proton Therapy Center at Massachusetts General Hospital, Fifth Workshop on Heavy Charge Particles in Biology and Medicine, GSI, Darmstadt, Aug. 1995, 11 pages. |
Flanz et al., Treating Patients with the NPTC Accelerator Based Proton Treatment Facility, Proceedings of the 2003 Particle Accelerator Conference, 2003, pp. 690-693. |
Flood and Frazier, The Wide-Band Driven RF System for the Berkeley 88-Inch Cyclotron, American Institute of Physics, Conference Proceedings., No. 9, 1972, 459-466. |
Foster and Kashikhin, Superconducting Superferric Dipole Magent with Cold Iron Core for the VLHC, IEEE Transactions on Applied Superconductivity, Mar. 2002, 12(1):111-115. |
Friesel et al., Design and Construction Progress on the IUCF Midwest Proton Radiation Institute, Proceedings of EPAC 2002, 2002, pp. 2736-2738. |
Fukumoto et al., A Proton Therapy Facility Plan Cyclotrons and their Applications, Proceedings of the 13th International Conference, Vancouver, Canada, Jul. 6-10, 1992, pp. 258-261. |
Fukumoto, Cyclotron Versus Synchrotron for Proton Beam Therapy, KEK Prepr., No. 95-122, Oct. 1995, pp. 533-536. |
Goto et al., Progress on the Sector Magnets for the Riken SRC, American Institute of Physics, 714 CP600, Cyclotrons and Their Applications 2001, Sixteenth International Conference, 2001, pp. 319-323. |
Graffman et al., Design Studies for a 200 MeV Proton Clinic for Radiotherapy, AIP Conference Proceedings: Cyclotrons—1972, 1972, No. 9, pp. 603-615. |
Graffman, et. al. Proton radiotherapy with the Uppsala cyclotron. Experience and plans Strahlentherapie, 1985, 161(12):764-770. |
Graffman, S., et al., Clinical Trials in Radiotherapy and the Merits of High Energy Protons, Acta Radiol. Therapy Phys. Biol. 9:1-23 (1970). |
Hede, Research Groups Promoting Proton Therapy Lite, Journal of the National Cancer Institute, Dec. 6, 2006, 98(23):1682-1684. |
Heinz, Superconducting Pulsed Magnetic Systems for High-Energy Synchrotrons, Proceedings of the Fourth International Cryogenic Engineering Conference, May 24-26, 1972, pp. 55-63. |
Hentschel et al., Plans for the German National Neutron Therapy Centre with a Hospital-Based 70 MeV Proton Cyclotron at University Hospital Essen/Germany, Cyclotrons and their Applications, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, Franco, Jun. 14-19, 1998, pp. 21-23. |
Hepburn et al., Superconducting Cyclotron Neutron Source for Therapy, International Journal of Radiation Oncology Biology Physics, vol. 3 complete, 1977, pp. 387-391. |
Hirabayashi, Development of Superconducting Magnets for Beam Lines and Accelerator at KEK, IEEE Transaction on Magnetics, Jan. 1981, Mag-17(1 ):728-731. |
Indiana's mega-million proton therapy cancer center welcomes its first patients [online] Press release, Health & Medicine Week, 2004, retrieved from NewsRx.com, Mar. 1, 2004, pp. 119-120. |
International Preliminary Report on Patentability from PCT application No. PCT/US2013/062119 dated Mar. 31, 2015 (7 pages). |
International Search Report and Written Opinion from PCT application No. PCT/US2013/062119 dated Nov. 26, 2013 (9 pages). |
International Search Report and Written Opinion dated Feb. 12, 2014 from counterpart PCT application No. PCT/US2013/062137 (12 pages). |
Ishibashi and Mcinturff, Stress Analysis of Superconducting 1 OT Magnets for Synchrotron, Proceedings of the Ninth International Cryogenic Engineering Conference, May 11-14, 1982, pp. 513-516. |
Ishibashi and Mcinturff, Winding Design Study of Superconducting 10 T Dipoles for a Synchrotron, IEEE Transactions on Magnetics, May 1983, MAG-19(3):1364-1367. |
Jahnke et al., First Superconducting Prototype Magnets for a Compact Synchrotron Radiation Source in Operation, IEEE Transactions on Magnetics, Mar. 1988, 24(2)1 230-1232. |
Japanese office action issued in Japanese application 2015-534728 dated Mar. 28, 2016 (6 pages). Note: English translation has not been received from Associate. |
Jones and Dershem, Synchrotron Radiation from Proton in a 20 TEV, 10 TESLA Superconducting Super Collider Proceedings of the 12th International Conference on High-Energy Accelerator, Aug. 11-16, 1983, pp. 138-140. |
Jones and Mills, The South African National Accelerator Centre: Particle Therapy and Isotope Production Programmes, Radiation Physics and Chemistry, Apr.-Jun. 1998, 51 ( 4-6):571-578. |
Jones et al., Status Report of the NAC Particle Therapy Programme, Stralentherapie and Onkologie, vol. 175, Suppl. II, Jun. 1999, pp. 30-32. |
Jones, Present Status and Future Trends of Heavy Particle Radiotherapy, Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Jun. 14-19, 1998, pp. 13-20. |
Jones, Progress with the 200 MeV Cyclotron Facility at the National Accelerator Centre, Commission of the European Communities Radiation Protection Proceedings, Fifth Symposium on Neutron Dosimetry, Sep. 17-21, 1984, vol. II, pp. 989-998. |
Jongen et al., Development of a Low-cost Compact Cyclotron System for Proton Therapy, National Institute of Radiol. Sci,1991, No. 81, DD. 189-200. |
Jongen et al., Progress report on the IBA-SHI small cyclotron for cancer therapy Nuclear Instruments and Methods in Physics Research, Section B, vol. 79, issue 1-4, 1993, pp. 885-889. |
Jongen et al., The proton therapy system for MGH's NPTC: equipment description and progress report, Bulletin du Cancer/Radiotherapie, Proceedings of the meeting of the European Heavy Particle Therapy Group, 1996, 83(Suppl. 1):219-222. |
Jongen et al., The proton therapy system for the NPTC: Equipment Description and progress report, Nuclear Instruments and methods in physics research, 1996, Section B, 113(1 ): 522-525. |
Kanai et al., Three-dimensional Beam Scanning for Proton Therapy, Nuclear Instruments and Methods in Physic Research, Sep. 1, 1983, The Netherlands, 214(23):491-496. |
Karlin et al., Medical Radiology (Moscow), 1983, 28, 13. |
Karlin et al., The State and Prospects in the Development of the Medical Proton Tract on the Synchrocyclotron in Gatchina, Med. Radial., Moscow, 28(3):28-32 (Mar. 1983)(German with English Abstract on end of p. 32). |
Kats and Druzhinin, Comparison of Methods for Irradiation Prone Patients, Atomic Energy, Feb. 2003, 94(2): 120-123. |
Kats and Onosovskii, A Planar Magnetooptical System for the Irradiation of a Lying Patient with a Proton Beam from Various Directions, Instruments and Experimental Techniques, 1996, 39(1):127-131. |
Kats and Onosovskii, A Simple, Compact, Flat System for the Irradiation of a Lying Patient with a Proton Beam from Different Directions, Instruments and Experimental Techniques, 1996, 39(1):132-134. |
Khoroshkov et al., Moscow Hospital-Based Proton Therapy Facility Design, Am. Journal Clinical Oncology: CCT, Apr. 1994, 17(2)109-114. |
Kim and Blosser, Optimized Magnet for a 250 MeV Proton Radiotherapy Cyclotron, Cyclotrons and Their Applications 2001, May 2001, Sixteenth International Conference, pp. 345-347. |
Kim and Yun, A Light-Ion Superconducting Cyclotron System for Multi-Disciplinary Users, Journal of the Korean Physical Society, Sep. 2003, 43(3):325-331. |
Kim et al., Construction of 8T Magnet Test Stand for Cyclotron Studies, IEEE Transactions on Applied Superconductivity, Mar. 1993, 3(1):266-268. |
Kim et al., Design Study of a Superconducting Cyclotron for Heavy Ion Therapy, Cyclotrons and Their Applications 2001, Sixteenth International Conference, May 13-17, 2001, pp. 324-326. |
Kim et al., Trim Coil System for the Riken Cyclotron Ring Cyclotron, Proceedings of the 1997 Particle Accelerator Conference, IEEE, Dec. 1981, vol. 3, pp. 214-235 or 3422-3424, 1998. |
Kim, An Eight Tesla Superconducting Magnet for Cyclotron Studies, Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy, 1994, 13 8 pages. |
Kimstrand, Beam Modelling for Treatment Planning of Scanned Proton Beams, Digital Comprehensive Summaries of Uppsala dissertations from the Faculty of Medicine 330, Uppsala Universitet, 2008, 58 pages. |
Kishida and Yano, Beam Transport System for the RIKEN SSC (II), Scientific Papers of the Institute of Physical and Chemical Research, Dec. 1981, 75(4):214-235. |
Koehler et al., Range Modulators for Protons and Heavy Ions, Nuclear Instruments and Methods, 1975, vol. 131, pp. 437-440. |
Koto and Tsujii, Future of Particle Thera12y, Ja12anese Journal of Cancer Clinics, 2001, 47(1):95-98 [Lang.: Japanese], English abstract (htt12://sciencelinks.j12/jeast/article/200206/000020020601A05 I I 453 .nhn). |
Kraft et al., Hadrontherapy in Oncology, U. Amaldi and Larrsson, editors Elsevier Science, 1994, 161 pages. |
Krevet et al., Design of a Strongly Curved Superconducting Bending Magnet for a Compact Synchrotron Light Source, Advances in Cryogenic Engineering, 1988, vol. 33, pp. 25-32. |
Laisne et al., The Orsay 200 MeV Synchrocyclotron, IEEE Transactions on Nuclear Science, Apr. 1979, NS-26(2):1919-1922. |
Larsson, B., et al., “The High-Energy Proton Beam as a Neurosurgical Tool,” Nature vol. 182, pp. 1222-1223 (1958). |
Larsson, Biomedical Program for the Converted 200-MeV Synchrocyclotron at the Gustaf Werner Institute, Radiation Research, 1985, 104:S310-S318. |
Lawrence et al., Heavy particles in acromegaly and Cushing's Disease, in Endocrine and Norendocrine Hormone Producing Tumors (Year Book Medical Chicago, 1973, pp. 29-61. |
Lawrence et al., Successful Treatment of Acromegaly: Metabolic and Clinical Studies in 145 Patients, The Journal of Clinical Endrocrinology and Metabolism, Aug. 1970, 31(2), 21 pages. |
Lawrence et al., Treatment of Pituitary Tumors, (Excerpta medica, Amsterdam/American Elsevier, New York, 1973, pp. 253-262. |
Lawrence, J.H., Proton Irradiation of the Pituitary Cancer, vol. 10, pp. 795-798 (1957). |
Lecroy et al., Viewing Probe for High Voltage Pulses, Review of Scientific Instruments USA, Dec. 1960, 31(12):1354. |
Lin et al., Principles and 10 Year Experience of the Beam Monitor System at the PSI Scanned Proton Therapy Facility, Center for Proton Radiation Therapy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland, 2007, 21 pages. |
Linfoot et al., Acromegaly, in Hormonal Proteins and Peptides, edited by C.H. Li, 1975, pp. 191-246. |
Literature Author and Keyword Search, Feb. 14, 2005, 44 pages. |
Literature Keyword Search, Jan. 24, 2005, 98 pages. |
Literature Search and Keyword Search for Synchrocyclotron, Jan. 25, 2005, 68 pages. |
Literature Search by Company Name/Component Source, Jan. 24, 2005, 111 pages. |
Literature Search, Jan. 26, 2005, 37 pages. |
Livingston, M.S., et al. A Capillary Ion Source for the Cyclotron, Review Science Instruments, vol. 10, p. 9. 63-67, (1939). |
LLNL, UC Davis Team Up to Fight Cancer, Lawrence Livermore National Laboratory, Apr. 28, 2006, SF-06-04-02, Livermore, California, pp. 1-4. |
Mandrillon, High Energy Medical Accelerators, EPAC 90, 2nd European Particle Accelerator Conference, Jun. 12-16, 1990, 2:54-58. |
Marchand et al., IBA Proton Pencil Beam Scanning: an Innovative Solution for Cancer Treatment, Proceedings of EP AC 2000, Vienna, Austria, 3 pages. |
Marti et al., High Intensity Operation of a Superconducting Cyclotron, Proceedings of the I 4the International Conference, Cyclotrons and Their Applications, Oct. 1995, pp. 45-48 (Oct. 1995). |
Martin, Operational Experience with Superconducting Synchrotron Magnets Proceedings of the 1987 IEEE Particle Accelerator Conference, Mar. 16-19, 1987, vol. 3 of 3: 1379-1382. |
Meote et al., ETOILE Hadrontherapy Project, Review of Design Studies Proceedings of EPAC 2002, 2002, pp. 2745-2747. |
Miyamoto et al., Development of the Proton Therapy System, The Hitachi Hyoron, 79(10):775-775 779 (1997) [Lang: Japanese], English abstract (http://www.hitachi.com/rev/1998/revfeb98/rev4 706.htm). |
Montelius et al., The Narrow Proton Beam Therapy Unit at the Svedberg Laboratory in Uppsala, ACTA Oncologica, 1991, 30:739-745. |
Moser et al., Nonlinear Beam Optics with Real Fields in Compact Storage Rings, Nuclear Instruments & Methods in Physics Research/Section B, B30, Feb. 1988, No. 1, pp. 105-109. |
Moyers et al., A Continuously Variable Thickness Scatterer for Proton Beams Using Self-compensating Dual Linear Wedges Loma Linda University Medical Center, Dept. of Radiation Medicine, Loma Linda, CA, Nov. 2, 1992, 21 pages. |
National Cancer Institute Funding (Senate-Sep. 21, I 992} (wvw.tbomas.loc.gov/cgibin/querv/z?rl02:S21SE2-7l2 (2 pages). |
Nicholson, Applications of Proton Beam Therapy, Journal of the American Society of Radiologic Technologists, May/Jun. 1996, 67(5): 439-441. |
Nolen et al., The Integrated Cryogenic—Superconducting Beam Transport System Planned for MSU, Proceedings of the J21h International Conference on High-Energy Accelerators, Aug. 1983, pp. 549-551. |
Norimine et al., A Design of a Rotating Gantry with Easy Steering for Proton Therapy, Proceedings of EPAC 2002, 2002, pp. 2751-2753. |
Ogino, Takashi, Heavy Charged Particle Radiotherapy-Proton Beam, Division of Radiation Oncology, National Cancer Hospital East, Kashiwa, Japan, Dec. 2003, 7 pages. |
Okumura et al., Overview and Future Prospect of Proton Radiotherapy, Japanese Journal of Cancer Clinics, 1997, 43(2):209-214 [Lang.: Japanese]. |
Okumura et al., Proton Radiotherapy Japanese Journal of Cancer and Chemotherapy, 1993, 10. 20(14):2149-2155[Lang.: Japanese]. |
Ormrod, J.H., et al, Status of the Chalk-River Superconducting Heavy-Ion Cyclotron, Proceedings of 9th International Conference on Cyclotrons and their Applications '81, 1981 (9 pages). |
Ormrod, J.H., et al., The Chalk-River Superconducting Cyclotron, Proceedings of the International Conference on Cyclotrons and their applications '79, 1979 (6 pages). |
Outstanding from Search Reports, Accelerator of Polarized Portons at Fermilab, 2005, 20 pages. |
Paganetti et al., Proton Beam Radiotherapy—The State of the Art, Springer Verlag, Heidelberg, ISBN 3-540-00321-5, Oct. 2005,36 pages. |
Palmer and Tollestrup, Superconducting Magnet Technology for Accelerators, Annual Review of Nuclear and Particle Science, 1984, vol. 34, pp. 247-284. |
Patent Assignee and Keyword Searches for Synchrocyclotron, Jan. 25, 2005, 78 pages. |
Patent Assignee Search Paul Scherrer Institute, Library Services at Fish & Richardson P.C., Mar. 20, 2007, 40 pages. |
Patent Prior Art Search for ‘Proton Therapy System’, Library Services at Fish & Richardson P.C., Mar. 20, 2007, 46 pages. |
Pavlovic, Beam-optics study of the gantry beam delivery system for light-ion cancer therapy, Nuclear Instruments and Methods in Physics Research, Section A, Nov. 1997, 399(2):439-454(16). |
Pedroni and Enge, Beam optics design of compact gantry for proton therapy Medical & Biological Engineering & Computing, May 1995, 33(3):271-277. |
Pedroni et al., A Novel Gantry for Proton Therapy at the Paul Scherrer Institute, Cycloctrons and Their Applications 2001: Sixteenth International Conference. AIP Conference Proceedings, 2001, 600:13-17. |
Pedroni et al., The 200-MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization, Medical Physics, Jan. 1995, 22(1 ):37-53. |
Pedroni, Accelerators for Charged Particle Therapy: Performance Criteria from the User Point of View, Cyclotrons and their Applications, Proceedings of the 13th International Conference, Jul. 6-10, 1992, pp. 226-233. |
Pedroni, E. and Jermann, M. “SGSMP: Bulletin Mar. 2002 Proscan Project, Progress Report on the Proscan Project of PSI,” [online] retrieved from www.sgsmp.ch/protA23.htm, (5 pages) Mar. 2002. |
Pedroni, Latest Developments in Proton Therapy Proceedings of EPAC 2000, pp. 240-244, 2000. |
Pedroni, Status of Proton Therapy: results and future trends, Paul Scherrer Institute, Division of Radiation Medicine, 1994, 5 pages. |
Peggs et al., A Survey of Hadron Therapy Accelerator Technologies, Particle Accelerator Conference, Jun. 25-29 2008, 7 pages. |
Potts et al., MPWP6-Therapy III: Treatment Aids and Techniques Medical Physics, Sep./Oct. 1988, 15(5):798. |
Pourrahimi et al., Powder Metallurgy Processed Nb3Sn(Ta) Wire for High Field NMR magnets, IEEE Transactions on Applied Superconductivity, Jun. 1995, 5(2)1 603-1606. |
Prieels et al., The IBA State-of-the-Art Proton Therapy System, Performances and Recent Results, Application of Accelerators in Research and industry—Sixteenth Int'l Conj, American Institute of Physics, Nov. 1-5, 2000, 576:857-860. |
Rabin et al., Compact Designs for Comprehensive Proton Beam Clinical Facilities, Nuclear Instruments & Methods in Physics Research, Apr. 1989, Section B, vol. 40-41, Part II, pp. 1335-1339. |
Rainwater, James, Status of the Nevis Synchrocyclotron Modification, AIP Conference Proceedings No. 9, 1972 (14 pages). |
Research & Development Magazine, Proton Therapy Center Nearing Completion, Aug. 1999, 41(9):2 pages (www.rdmag.com). |
Resmini,, Design Characteristics of the K=800 Superconducting Cyclotron at M.S.U., Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, IEEE Transaction on Nuclear Science, vol. NS-26, No. 2, Apr. 1979, 8 pages. |
Response to European Communication issued in European application No. 13774886.9 dated Jun. 12, 2015, filed on Dec. 9, 2015 (26 pages). |
Response to European Communication issued in European application No. 13783422.2 dated Jun. 12, 2015, filed on Dec. 8, 2015 (19 pages). |
RetroSearch Berkeley 88-Inch Cyclotron ‘RF’ or ‘Frequency Control’, Jan. 21, 2005, 36 pages. |
RetroSearch Berkeley 88-Inch Cyclotron, Jan. 24, 2005, 170 pages. |
RetroSearch Bernard Gottschalk, Cyclotron, Beams, Compensated Upstream Modulator, Compensated Scatter, Jan. 21, 2005, 20 pages. |
RetroSearch Cyclotron with ‘RF’ or ‘Frequency Control’, Jan. 21, 2005, 49 pages. |
RetroSearch Gottschalk, Bernard, Harvard Cyclotron Wheel, Jan. 21, 2005, 20 pages. |
RetroSearch Loma Linda University Beam Compensation, Jan. 21, 2005, 60 pages. |
RetroSearch Loma Linda University, Beam Compensation Foil Wedge, Jan. 21, 2005, 15 pages. |
Revised Patent Keyword Search, Jan. 25, 2005, 86 pages. |
Rifuggiato et, al., Status Report of the LNS Superconducting Cyclotron Nukleonika, 2003, 48:SI31-SI34, Supplement 2. |
Rode, Tevatron Cryogenic System, Proceedings of the 12th International Conference on Highenergy Accelerators, Fermilab, Aug. 11-16, 1983, pp. 529-535. |
Salzburger et al., Superconducting Synchrotron Magnets Supraleitende Synchrotronmagnete, NTiS, 155 pages (Oct. 1975). |
Schillo et al,. Compact Superconducting 250 MeV Proton Cyclotron for the PSI Proscan Proton Therapy Project, Cyclotrons and Their Applications 2001, Sixteenth International Conference, 2001, pp. 37-39. |
Schneider et al., Nevis Synchrocyclotron Conversion Program—RF System, IEEE Transactions on Nuclear Science USA, Jun. 1969, ns 16(3): 430-433. |
Schneider et al., Superconducting Cyclotrons, IEEE Transactions on Magnetics, vol. MAG-11, No. 2, Mar. 1975, New York, pp. 443-446. |
Schreuder et al., The Non-orthogonal Fixed Beam Arrangement for the Second Proton Therapy Facility at the National Accelerator Centre, Application of Accelerators in Research and Industry, American Institute of Physics, Proceedings of the Fifteenth International Conference, Nov. 1998, Part Two, pp. 963-966. |
Schreuder, Recent Developments in Superconducting Cyclotrons, Proceedings of the 1995 Particle Accelerator Conference, May 1-5, 1995, vol. 1, pp. 317-321. |
Schubert and Blosser, Conceptual Design of a High Field Ultra-Compact Cyclotron for Nuclear Physics Research, Proceedings of the 1997 Particle Accelerator Conference, May 12-16, 1997, vol. 1, 3 pages 1060-1062. |
Schubert, Extending the Feasibility Boundary of the Isochronous Cyclotron, Dissertation submitted to Michigan State University, 1997, Abstract http://adsabs.harvard.edu/abs/1998PhDT...147S. |
Shelaev et al., Design Features of a Model Superconducting Synchrotron of JINR, Proceedings of the 12th International Conference on High-energy Accelerators, Aug. 11-16, 1983, pp. 416-418. |
Shintomi et. Al, Technology and Materials for the Superconducting Super Collider (SSC) Project, [Lang.: Japanese], The Iron and Steel Institute of Japan 00211575, 78(8): 1305-1313, 1992, http://ci.nii.ac.ip/naid/I I0001493249/en/. |
Sisterson, Clinical use of proton and ion beams from a world-wide perspective, Nuclear Instruments and Methods in Physics Research, Section B, 1989, 40-41:1350-1353. |
Sisterson, World Wide Proton Therapy Experience in 1997, The American Institute of Physics, Applications of Accelerators in Research and Industry, Proceedings of the Fifteenth International Conference, Part Two, Nov. 1998, pp. 959-962. |
Slater et al., Developing a Clinical Proton Accelerator Facility: Consortium-Assisted Technology Transfer, Conference Record of the 1991 IEEE Particle Accelerator Conference: Accelerator Science and Technology, vol. I, May 6-9, 1991, pp. 532-536. |
Slater et al., Development of a Hospital-Based Proton Beam Treatment Center, International Journal of Radiation Oncology Biology Physics, Apr. 1988, 14(4):761-775. |
Smith et al., The Northeast Proton Therapy Center at Massachusetts General Hospital Journal of Brachytherapy International, Jan. 1997, pp. 137-139. |
Snyder and Marti, Central region design studies for a proposed 250 MeV proton cyclotron, Nuclear Instruments and Methods in Physics Research, Section A, 1995, vol. 355, pp. 618-623. |
Soga, Progress of Particle Therapy in Japan, Application of Accelerators in Research and Industry, American Institute of Physics, Sixteenth International Conference, Nov. 2000, pp. 869-872. |
Spiller et al., The GSI Synchrotron Facility Proposal for Acceleration of High Intensity Ion and Proton Beams Proceedings of the 2003 Particle Accelerator Conference, May 12-16, 2003, vol. 1, pp. 589-591. |
Stanford et al., Method of Temperature Control in Microwave Ferroelectric Measurements, Sperry Microwave Electronics Company, Clearwater, Florida, Sep. 19, 1960, 1 page. |
Superconducting Cyclotron Contract awarded by Paul Scherrer Institute (PSI), Villigen, Switzerland, http://www.accel.de/News/superconducting_ cyclotron_ contract.htm, Jan. 2009, 1 page. |
Tadashi et al., Large superconducting super collider (SSC) in the planning and materials technology,78(8):1305-1313, The Iron and Steel Institute of Japan 00211575, Aug. 1992. |
Takada, Conceptual Design of a Proton Rotating Gantry for Cancer Therapy, Japanese Journal of Medical Physics, 1995, 15(4):270-284. |
Takayama et al., Compact Cyclotron for Proton Therapy, Proceedings of the 81h Symposium on Accelerator Science and Technology, Japan, Nov. 25-27, 1991, pp. 380-382. |
Teng, The Fermilab Tevatron, Coral Gables 1981, Proceedings, Gauge Theories, Massive Neutrinos, and Proton Decay, 1981, pp. 43-62. |
The Davis 76-Inch Isochronous Cyclotron, Beam on: Crocker Nuclear Laboratory, University of California, 2009, 1 page. |
The Journal of Practical Pharmacy,1995, 46(1):97-103 [Japanese]. |
The K100 Neutron-therapy Cyclotron, National Superconducting Cyclotron Laboratory at Michigan State University (NSCL ), retrieved from: http://www.nscl.msu.edu/tech/accelerators/kl 00, Feb. 2005, 1 page. |
The K250 Proton therapy Cyclotron, National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k.250.html, Feb. 2005, 2 pages. |
The K250 Proton-therapy Cyclotron Photo Illustration, National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/media/image/ experimental-equipment-technology /25 0 .html, Feb. 2005, 1 page. |
Tilly, et al., Development and verification of the pulsed scanned proton beam at the Svedberg Laboratory in Uppsala, Physics in Medicine and Biology, Phys. Med. Biol. 52, pp. 2741-2454, 2007. |
Tobias, C.A., et al., Pituitary Irradiation with High-Energy Proton Beams a Preliminary Report, Cancer Research, vol. 18, No. 2, pp. 121-134 (1958). |
Tom, The Use of Compact Cyclotrons for Producing Fast Neutrons for Therapy in a Rotatable Isocentric Gantry, IEEE Transaction on Nuclear Science, Apr. 1979, 26(2):2294-2298. |
Toyoda, Proton Therapy System, Sumitomo Heavy Industries, Ltd., 2000, 5 pages. |
Trinks et. al., The Tritron: A Superconducting Separated-Orbit Cyclotron, Nuclear Instruments and Methods in Physics Research, Section A, 1986, vol. 244, pp. 273-282. |
Tsuji, The Future and Progress of Proton Beam Radiotherapy, Journal of Japanese Society for Therapeutic Radiology and Oncology, 1994, 6(2):63-76. |
U.S. Appl. No. 13/830,792, filed Mar. 14, 2013. |
U.S. Appl. No. 13/949,459, filed July 24, 2013. |
U.S. Appl. No. 61/676,377, filed Jul. 27, 2012. |
UC Davis School of Medicine, Unlikely Partners Turn Military Defense into Cancer Offense, Current Issue Summer 2008, Sacramento, California, pp. 1-2. |
Umegaki et al., Development of an Advanced Proton Beam Therapy System for Cancer Treatment Hitachi Hyoron, 2003, 85(9):605-608 [Lang.: Japanese], English abstract, http://www.hitachi.com/ICSFiles/afieldfile/2004/06/0 l/r2003_ 04_ I 04.pdf or http://www.hitachi.com/rev/archive/2003/2005649_12606.html (full text) [Hitachi, 52( 4), Dec. 2003]. |
Umezawa et al., Beam Commissioning of the new Proton Therapy System for University of Tsukuba, Proceedings of the 2001 Particle Accelerator Conference, vol. 1, Jun. 18-22, 2001, pp. 648-650. |
van Steenbergen, Superconducting Synchroton Development at BNL, Proceedings of the 8th International Conference on Hi£h-Ener5'Y Accelerators CERN 1971, 1971, pp. 196-198. |
van Steenbergen, The CMS, a Cold Magnet Synchrotron to Upgrade the Proton Energy Range of the BNL Facility, IEEE Transactions on Nuclear Science, Jun. 1971, 18(3):694-698. |
Vandeplassche et al., 235 MeV Cyclotron for MGH's Northeast Proton Therapy Center (NPTC): Present Status, EPAC 96, Fifth European Partical Accelerator Conference, vol. 3, Jun. 10-14, 1996, pp. 2650-2652. |
Verster, N.F.,: Regenerative Beam Extraction from the 150-MeV Synchrocyclotron at the Laboratoire Curie, Proceedings of Sector-Focused Cyclotrons 1959, 1959, pp. 224-229 (6 pages). |
Vorobiev et al., Concepts of a Compact Achromatic Proton Gantry with a Wide Scanning Field, Nuclear Instruments and Methods in Physics Research, Section A., 1998, 406(2):307-310. |
Vrenken et al., A Design of a Compact Gantry for Proton Therapy with 2D-Scanning, Nuclear Instruments and Methods in Physics Research, Section A, 1999, 426(2):618-624. |
Wikipedia, “Cyclotron,” http://en.wikipedia.org/wiki/Cyclotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009)(7 pages). |
Wikipedia, Synchrotron http://en.wiki11edia.org/wiki/Synchrotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009), 7 pages. |
Worldwide Patent Assignee Search, Jan. 24, 2005, 224 pages. |
Worldwide Patent Keyword Search, Jan. 24, 2005, 94 pages. |
Wu, Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron, Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy, 1990, 172 pages. |
York et al., Present Status and Future Possibilities at NSCL-MSU, EP AC 94, Fourth European Particle Accelerator Conference, pp. 554-556, Jun. 1994. |
Yudelev et al., Hospital Based Superconducting Cyclotron for Neutron Therapy: Medical Physics Perspective, Cyclotrons and their applications 2001, 16th International Conference. American Institute of Physics Conference Proceedings, vol. 600, May 13-17, 2001, pp. 40-43. |
Zherbin et al., Proton Beam Therapy at the Leningrad Synchrocyclotron (Clinicomethodological Aspects and Therapeutic Results), Aug. 1987, 32(8):17-22, (German with English abstract on pp. 21-22). |
Notice of Allowance for JP2015-534733 (Japanese Translation), 4 pages (dated Oct. 16, 2017). |
Notification of Grant Patent Right for CN201380062102.X, 6 pages (dated Oct. 26, 2017). |
Communication pursuant to Rule 164(2(b) and Article 94(3) EPC for EP13783422.2, 178 pages (dated Nov. 17, 2017). |
Number | Date | Country | |
---|---|---|---|
20170014649 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61707624 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14038888 | Sep 2013 | US |
Child | 15265326 | US |