1. Field of the Technology
The present disclosure relates to digital printing systems having plural tandem marking or printing engines of the type with seamed photoreceptor (P/R) belts. In such printing systems, it is common practice to invert the sheet after marking on one side in a first printing engine and for feeding the inverted sheet into a second printing engine for marking on the opposite side of the sheet to thus facilitate high speed duplex digital printing. In printing systems having plural tandem engines using photoreceptor belts with seams, it is necessary to avoid imaging on belt seams. This requires some manner of skipping pitches, a pitch defined as the space on the belt for one image, in order to avoid either placing images on belt seams or having the sheet arrive outside the timing window for sheet registration in the second engine. However, skipping pitches adversely affects printer efficiency.
2. Description of the Prior Art
A general manner of belt synchronization to avoid seams, showing the control of the belt speed of the marking devices to synchronize belts, is disclosed in U.S. Pat. No. 7,519,314 B2, assigned to the same assignee as the present disclosure. However, this technique is relatively inefficient in relation to the present disclosure. It is also shown in pending U.S. application Ser. No. 12/388101, filed Feb. 18, 2009 by Ana P. Tooker et al, “Controlling Sheet Registration In A Digital Printing System” (Attorney File No. 20080945), to control sheet registration in a printing system by varying the dwell time of a sheet in an inverter in a first marking device and changing various transport motor speeds to time the arrival of the sheet at a second marking device. However, there is no disclosure of the need to synchronize the belts for efficient avoidance of belt seams for the productivity of the printing process. With the speeds of the two PR's no longer synchronized, the seam zones of said PR's are no longer in phase. With no understanding of the relative position of the two seam zones to each other, skipped pitches may occur in a non-optimal manner impacting customer productivity.
This disclosure is a calibration or positional procedure for the synchronization of photoreceptor belt seams of tandem marking devices at system cycle-up. The procedure allows for images projected upon equivalent image panels relative to the belt seams of the tandem engines to be printed on the same sheet. Since the successive image panels on each belt are of relatively equal distance from the respective belt seam, there is less frequency of the need to skip pitches in the printing operation to avoid imaging on a belt seam.
Further features and advantages will be apparent to those skilled in the art from the specific apparatus and its operation or methods described in the example(s) below, and the claims. Thus, they will be better understood from this description of these specific embodiment(s), including the drawing figures wherein:
In accordance with the present disclosure, successive image panels on each photosensitive belt of the tandem engines in a printing system are of relatively equal distance from the respective belt seam of the photosensitive belt. In particular, the position of the belt seam of the second print engine in a tandem printing system relative to the belt seam of the first print engine is determined at system start-up. This allows for inverted sheets conveyed from the first print engine to the second print engine to be printed on the second side using an equivalent image panel (same location with respect to the belt seam of engine 2) as the location of the image panel with respect to the belt seam of engine 1 for printing on the first side.
As an example, in 10-pitch mode, where 10 image panels (locations) are defined around the circumference of the P/R belt, image panel #1 is defined as the panel immediately following the seam zone and image panel #10 as the panel immediately preceding the seam zone. An equivalent image panel is the same relative location of an image 1 in the first marking device from the seam of the first belt as the location of an image 2 in the second marking device from the seam of the second belt. That is, if an image panel used for printing on the first side of a sheet is the panel right after the seam, the first image panel used for printing on the second side of the same sheet in the second engine will also be the panel right after the seam of the second engine belt. By beginning the job with the belt positions in a known location, the time (and number of prints) before the first skipped pitch can be maximized.
With reference to
The sheet stock is controlled to arrive at the registration point indicated by the arrow and denoted by reference numeral 35 in marking engine 30 at a controlled time. The second marking engine 30 includes a P/R belt 32 and has colorant generators 34 for forming a color image on the P/R belt 32. It should be understood that the belts 16 and 32 include seams and that imaging on the seams of either belt is to be avoided to insure image quality. The P/R belt 32 is operative to transfer the color image to the second side of a sheet at a transfer station indicated by reference numeral 33. The marking engine 30 also includes a post marking fuser 36. The sheet is then conveyed to a second inverter 38 which restores the sheet to its original orientation and discharges the duplex marked sheet to a finisher 40.
The system of
With reference to
As shown in block 58, the sheet arrives at the entrance to engine 1 and at block 60, there is illustrated the sheet arriving at the engine 1 registration subsystem. Block 62 illustrates the step of registration of the sheet with the image to be transferred to the sheet. At this point, the relationship of the arrival of the sheet at the transfer station with respect to the arrival of the image on the belt must be within a ±30 millisecond tolerance. At block 64, there is an illustration of the arrival of the sheet at the engine 1 transfer station for transfer of the image to the first side of a given sheet. It should be noted that at this point, the control system has positioned the photoreceptor belts of engines 1 and 2 in optimal position with respect to the image panels on the belts with respect to the belt seams.
At block 66, the sheet has been parked or temporarily delayed in the engine 1 sheet output inverter. Block 68 shows the step of ejecting the sheet from the output inverter for conveyance to engine 2 at the scheduled arrival time and block 70 illustrates the arrival of the sheet at the engine 2 entrance. In block 72, the sheet arrives at the engine 2 registration system and at block 74 the sheet is registered to the image on the engine 2 belt. As with engine 1, the sheet registration tolerance of engine 2 for receiving a belt image is preferably within plus or minus 30 milliseconds. At block 76, finally, there is illustrated the transfer of the image from belt 2 of engine 2 to the second side of the given sheet.
It should be noted again, that, in accordance with the present disclosure, the sheet that receives an image from a panel on belt 2 on its second side is the same sheet that has received an image from an equivalent panel on belt 1 of engine 1 on its first side. That is, an image on belt 1 of engine 1 on the panel or portion of the belt immediately after the engine 1 belt seam will be transferred to a first side of a given sheet. The second side of the given sheet will then receive an image from the belt of engine 2. The image from belt 2 will be from a panel or portion of the belt immediately after the seam of belt 2. In a similar manner, the same sheet that receives an image from the second panel of belt 1 immediately after the belt seam of belt 1 of engine 1 on its first side will receive an image on its second side from the second panel of belt 2 immediately after the seam of belt 2 of engine 2.
It should also be apparent that while specific embodiments of the present disclosure have been illustrated and described, it will be understood by those having ordinary skill in the art to which this disclosure pertains, that changes can be made to those embodiments without departing from the spirit and scope of the disclosure. Further, the claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, or position.