CONTROLLING TRANSIENT RESPONSE OF A POWER SUPPLY

Information

  • Patent Application
  • 20100054006
  • Publication Number
    20100054006
  • Date Filed
    August 29, 2008
    15 years ago
  • Date Published
    March 04, 2010
    14 years ago
Abstract
A method and apparatus is provided to, among other things, supply power to a load under various load conditions. Output voltage transient responses of the system, such as may be caused by transients changes in the load conditions, may be controlled through current transformation on the output in order to correct or impede over-voltage conditions of the transient response.
Description
TECHNICAL FIELD

The present application relates to regulated power supply systems and methods for controlling transient responses in such systems.


BACKGROUND

Voltage transients caused by load changes or unstable load conditions can be difficult to correct quickly enough to prevent over-voltage conditions on the power supply output.


For example, unstable load conditions causing oscillations in supply voltage tend to occur when a negative impendence load is supplied in power by a conventional regulated power supply system. This is because negative impendence characteristics, in contrast with conventional resistive loads and inductive loads, generate current variations which are 180 degrees out of phase with supply voltage variations. Hence, for a negative impedance load supplied with constant power, a slight increase in output voltage tends to decrease the current absorbed by the load, which in turn tends to cause the load voltage to rise even further leading to an unstable condition which may damage the power supply system and its loads.


There is thus a need for a regulated power supply system which exhibits an improved response to transient load changes or unstable load conditions.


SUMMARY

In accordance with one aspect, there is provided a power supply system for controlling an output fluctuation, the system comprising: a current controlled current source, the source having an output circuit and a control circuit, the control circuit including a DC current source connected thereto for generating a control current, the circuits being inductively coupled such that current in the control circuit is proportional to current in the output circuit, the output circuit connected to a load; and a current transformer having a primary coil connected in series with the output circuit and a secondary connected in series with the control circuit.


In accordance with another aspect, there is provided a power supply apparatus for controlling an output fluctuation to a load, the system comprising: a permanent magnet generator/alternator assembly having at least one primary winding and at least one control winding, the primary winding connected to an output circuit including a load, the control winding connected to a control circuit including a DC control current source, the assembly having means for inductively coupling the primary and control windings such that current is in the primary is proportional to current in the control; and a current transformer having a primary coil connected in series with the output circuit and a secondary connected in series with the control circuit.


In accordance with aspect, there is provided a method for controlling an transient in a load circuit of a power supply, the method comprising: providing a current controlled current source having the output circuit inductively coupled to a control circuit such that current in the control circuit is proportionally to current in the output circuit; providing a DC control current to the control circuit and operating the current controlled current source to provide a current to a load via output terminals of an output circuit; inductively coupling an output terminal of the output circuit to the control circuit, such that a sudden decrease in current at the output terminal effects a proportional decrease in control current, thereby permitting the control circuit to control a transient load response in the output circuit.





BRIEF DESCRIPTION OF THE DRAWINGS

Further details will be apparent from the following detailed description, taken in combination with the appended figures, in which:



FIG. 1 is a schematic illustration of an example power supply system;



FIG. 2 is a flow chart for an example method of controlling a transient response of a power supply to a load; and



FIG. 3 is a schematic illustration of one possible embodiment of the power supply system of FIG. 1.





It will be noted that throughout the appended drawings, like features are identified by like reference numerals.


DETAILED DESCRIPTION

Referring to FIG. 1, the power supply system 10 has two output terminals A and B connected to a load 11. The power supply system 10 has a current controlled current source 12, a filtering device 14, a current transformer 16 and control circuitry 18.


A current transformer 16, having a primary 20 and a secondary 22, is connected in series with one of the power supply output conductors and directly in series with the load circuit 11. In particular, the primary 20 of the current transformer 16 is connected in series with the load 11 (i.e. between the output terminal B and the filtering device 14). DC output current supplied from the current controlled current source 12 flows to (in this example) the load via the current transformer primary 20. Thus, output current of the current controlled current source 12 provided to the external load 11 also flows through the primary 20 of the current transformer 16. The secondary 22 of the current transformer 16 is connected in series with the control circuitry 18, such that any transient current requested from the source 12 by current in the control circuitry 18, also flows in the secondary 22 of the current transformer 16 as well as in the control circuitry 18.


The operation of power supply system 10 may be better understood with reference to a specific implementation of the system, such as is presented in FIG. 3 and will now be discussed.


Referring to FIG. 3, in one example the current controlled current source 12 may include a permanent magnet generator/alternator 12 of the general type described in U.S. Pat. No. 7,262,539, the full contents and teachings of which patent are incorporated herein by reference. Further in this example, the generator/alternator 12 may be filtered by a filtering device 14 and may be modulated or regulated to provide a regulated DC output voltage, as is described in United States Published Patent Application US20080067982A1, the full contents and teachings of which published application are incorporated herein by reference. It will be understood, in light of the teachings herein and in the incorporated references, that controlling the control current delivered to the generator/alternator 12 allows the generator/alternator to behave as a current controlled current source.


The generator/alternator 12 in this example has multiple alternator phase coils 52 which are inductively coupled to a control coil (or coils) 44 as described in U.S. Pat. No. 7,262,539, so that current in the control coil(s) 44 proportionally affects the output power of by the generator/alternator 12. A transfer ratio may be provided between the control coil(s) 44 and the phase coils 52, such as a transfer ratio of 5:1 in this example. The control current flowing in the control coil 44 may optionally be externally controlled by a variable DC current source 46, as described in US20080067982A1, to vary the current flowing in the secondary coil inversely to a variation in current occurring in the primary coil. A voltage feedback 54 of the type described in US20080067982A1 be provided relative to a reference signal 5. Filtering device 14 may be provided by a rectifier circuit 48, which may include a capacitor 50. Any suitable filtering device 14 may be used. The skilled reader will appreciate that, although useful the purpose of the present description, FIG. 3 is highly schematic and does not necessarily show all system components or show all components in their correct number or exact physical placement.


In use, as is described in more detail US20080067982A1, the current delivered by such a generator/alternator 12 is proportional to the control current provided to the control coil(s) 44 of the alternator by the source 46. The generator/alternator 12, its associated control circuit 18, and the filtering device 14 thus form together an apparatus useful for generating regulated output voltage. The system 10 may thus be used to provide regulated power.


Referring still to FIG. 3, transient control may be provided by connection of system 10 to a current transformer 16, as will now be described. A primary coil 40 of the transformer 16 is connected in series with the DC output terminal B of the power supply system 10, while a secondary coil 42 of the transformer is connected in series with the control coil 44 and allows for a current to flow in a direction reverse to a direction of a current flowing in the primary coil 40, thereby having the effect of cancelling DC fluxes occurring in the core of the current transformer 16. A diode 56 is provided across the transformer secondary in the control circuit of this example to prevent the voltage across the secondary from reversing polarity.


The transformer primary-to-secondary ratio may be matched to the current controlled current source transfer ratio. For example, the generator/alternator 12 of FIG. 3 may have a transfer ratio of 5:1, meaning that the output current of the generator/alternator 12 is 5 times the control current input. While the current controlled current source may have any suitable current transfer ratio, matching the current transformer 16 primary-to-secondary ratio to the current transfer ratio of the current controlled current source may assist with ensuring that the current transformer 16 core remains unsaturated, since ampere turns in the primary are equal and opposite to the ampere turns in the secondary, thus resulting in cancellation of the flux in the core of the transformer. Consequently, the current transformer 16 may also be provided with a primary-to-secondary ratio of 5:1.


Referring still to FIG. 3, in use, it will be understood that changes in currents flowing respectively in the primary 40 and the secondary 42 of the current transformer 16 are related, such that if there should be an unrequested change in the current in the load circuit 11, for example caused by a sudden open circuiting of the load (a breaker circuit opening, for example), the current flowing in the secondary 42 will be influenced by the primary current such that the current flowing in the secondary 42 will be reduced at virtually the same instant. This will cause, in this example, the control current provided by the circuit 18 to the current controlled source 12 to be suddenly reduced, as well. As noted above, since output current is proportional to control current in current controlled current source 12, reducing the control current will also reduce the output current from the source 12, virtually in synchronism with the sudden loss of load. Without this current transformer 16 arrangement, the output voltage of the current source 12 would otherwise suddenly increase in response to an open circuit on the load, since the output load resistance has suddenly greatly increased. the skilled reader will appreciate that, if a voltage feedback 54 (as is further described in US20080067982A1) is provided, the output voltage of the source 12 would eventually (i.e. after some transient time) return to the desired/set output voltage through the control action of the voltage feedback, however the current transformer of the present arrangement provides a faster response time.


In the case where the control circuit 18 has an intrinsic inductance, such as where the circuit includes one or more control coils, the time to reduce the current in the control circuit may be dependant on the voltage which is available within the control circuit. As current in the control circuit changed, the inductively-generated back EMF (i.e. V=L*dI/dT, where V is voltage, L is inductance, I is current and T is time) relative to the available voltage across the control circuit tends to limit how quickly the control current can be changed. However, in the case where, say, a 5:1 transfer ratio is present between control and output in the current controlled source, the output voltage available on the secondary of the current transformer is 5 times greater than the voltage change at the current transformer primary and, as such, provides a control action which is 5 times faster than may otherwise be obtained from the voltage control portion of the control circuit 18.


Referring again to FIG. 1, therefore when a change (also referred to as an output fluctuation or a transient) in the output current at the output terminals A and B occurs, a control current flowing in the control circuit 18 instantaneously changes direction in a suitable direction to change the output power to correct the output power generated by the generator/alternator 12. The direction of the control current reduces the output power supplied through inductive coupling effects of the control circuit within the generator/alternator 12. The current on the control circuit, is influenced in a direction that adjusts the output current according to the load demand for transient conditions. In this example, the net control current will reduce/increase in response to a load transient (depending on the transient to be controlled). Therefore, a sudden drop in load current (e.g. due to an open circuit on the load) will also cause a drop in control current, which will effect a drop in generated current from the source. This reduction in generated current, in turn, reduces the output voltage and DC output current through the primary conductive device 20, thus mitigating positive output voltage transients due to sudden load reductions.


The described approach may thus provide a direct feedback mechanism useful, in one example, in case of sudden, unrequested transients in a condition of the load 11. The feedback mechanism allows the reduction of voltage transients caused by sudden changes in a load condition or an unstable load condition.



FIG. 2 illustrates one example method of controlling a transient response of a power supply system, as will now be described.


In step 30 a current controlled output current is generated.


In step 32, the output voltage is optionally monitored and controlled by comparing the output voltage of the source to a reference voltage, and the control current is adjusted to maintain the output voltage at a predetermined rate/level.


In step 34, a current transformer is provided with the primary in series with the output current terminals of the current controlled current source and the secondary in series with a control current circuit controlling the current controlled current source.


In step 36, the current transformer polarity is configured such that load-induced changes in system output current automatically provide proportional changes to the control current in the control current circuit, to thereby effect corrections to output current requested from the current controlled current source in response to load transients.


It will be understood that constant power loads often exhibit negative impedance instability characteristics. In the present arrangement, as current absorbed by the constant power load decreases, the transformer 16 reacts to the change in the supplied output current at the terminals A and B such that the output current is reduced in a controlled manner. The controlled reduction in the output current to the load, in turn, reduces the output voltage at the load. This tends to reduce the amount of phase shift between the current and the voltage at the load which is usually seen when the load exhibits negative impedance characteristics. The instabilities may therefore be alleviated through operation of the transformer 16.


It will also be understood that other variants of the power supply system 10 are possible in accordance with given practical applications. For example, the current controlled current source 12 may be any suitable current controlled current source. The embodiments described above therefore are intended to be exemplary only, and are susceptible to modification without departing from the present application. The application is intended to be limited solely by the scope of the appended claims.

Claims
  • 1. A power supply system for controlling an output fluctuation, the system comprising: a current controlled current source, the source having an output circuit and a control circuit, the control circuit including a DC current source connected thereto for generating a control current, the circuits being inductively coupled such that current in the control circuit is proportional to current in the output circuit, the output circuit connected to a load; anda current transformer having a primary coil connected in series with the output circuit and a secondary connected in series with the control circuit.
  • 2. The power supply system of claim 1 wherein the current controlled current source comprises a generator/alternator having at least a primary stator winding in series with the output circuit and at least a control winding in series with the control circuit, the generator/alternator having a rotor and a stator cooperating to define a rotor magnetic circuit around a first portion of the primary winding, the stator defining a secondary magnetic circuit encircling only a portion of the control winding a second portion of the primary winding different from the first portion, the primary and control windings thereby inductively coupled to one another.
  • 3. The power supply system of claim 1, wherein the control and output circuits of the source have a turns ratio and wherein a turns ratio of current transformer which is equal to the source turns ratio.
  • 4. The power supply system of claim 2, wherein the generator/alternator control and primary windings have a turns ratio and wherein a turns ratio of current transformer which is equal to the generator/alternator turns ratio.
  • 5. The power supply system of claim 2, further comprising a filtering device for regulating a generated output current from the permanent magnet motor.
  • 6. A power supply apparatus for controlling an output fluctuation to a load, the system comprising: a permanent magnet generator/alternator assembly having at least one primary winding and at least one control winding, the primary winding connected to an output circuit including a load, the control winding connected to a control circuit including a DC control current source, the assembly having means for inductively coupling the primary and control windings such that current is in the primary is proportional to current in the control; anda current transformer having a primary coil connected in series with the output circuit and a secondary connected in series with the control circuit.
  • 7. The power supply system of claim 6, wherein the generator/alternator control and primary windings have a turns ratio and wherein a turns ratio of current transformer which is equal to the generator/alternator turns ratio.
  • 8. The power supply system of claim 6, further comprising a filtering device for regulating a generated output current from the permanent magnet motor.
  • 9. A method for controlling a transient in a load circuit of a power supply, the method comprising: providing a current controlled current source having the output circuit inductively coupled to a control circuit such that current in the control circuit is proportionally to current in the output circuit;providing a DC control current to the control circuit and operating the current controlled current source to provide a current to a load via output terminals of an output circuit;inductively coupling an output terminal of the output circuit to the control circuit, such that a sudden decrease in current at the output terminal effects a proportional decrease in control current, thereby permitting the control circuit to control a transient load response in the output circuit.
  • 10. The method of claim 9 wherein the step of inductively coupling an output terminal of the output circuit to the control circuit comprises connecting a current transformer in series with the output terminal and in series with the control circuit.