The invention relates to a convection heating furnace for glass sheet, into which furnace glass sheet arrives along a hauling track, as on moving rolls, and further said furnace comprises of heating elements, in order to heat the air, which is blasted against the glass sheet, a blaster and blast air channelling for blasting said air against the glass sheet, and the air blast channelling has elongated channels in the direction of the glass sheet motion, into which at least a part of the heating elements, which heat the blast air, are fitted, and each channel comprises air blasting means on its flank directed against the glass sheet.
Previously known are heating convection ovens according to the above preamble, among others from publications EPO 0910553 B1 and FI-application publication 20030482. In these ovens the air blast cannot be distributed evenly on the glass surface in regard t to then direction of the glass advance in cross direction. This is due to the fact that blasting cannot be effectively led to the glass surface in the space between the blast channels, since from the channel bottoms the outermost air blasts should be directed diagonally to the glass, so the blasts would hit the glass surface evenly. Surely, it is easy to direct the jets diagonally, but this results in that the blasts do not reach the glass surface, because they are affected by a strong air back flow from the flank, which, through the outermost jets, strives to turn up to the space between the blast channels. Thus the outermost blasts reach quite badly to the glass and in this spot the glass temperature stays lower than in other spots. Oscillation does not improve the situation in this direction.
Since, because of the above described, the heating of the glass remains scant in spaces between the blast channels about on 20-40 mm broad lanes from end to end on the glass, and these lanes become under certain circumstances noticeable lanes after the heat treating, as annealing. The quality of glass suffers from this and does not necessarily be fit for its purpose.
In order to remove this above described disadvantage a new convection heating furnace has been developed, in which furnace the blast glass heating air is characterized in that, there are as air blast elements nozzle groups fixed on the channel flank, where the nozzle group is made of sheet metal, as of two, into shape formed sheets joined together to form a casing, whereby said casing comprises one or several for blast air directed discharge channels, and the direction of flow in said casing is essentially the same as in said discharge channels.
The advantage of a convection heating furnace according to the invention is that, all the blasting nozzles can be directed at right angles against the glass. No spot of the glass surface is left at worse blasting, because it is possible to place the nozzle groups almost continually as queues in cross direction against the direction of the glass motion. Since the nozzle group is broader than the channel that works as fixing frame, the adjacent nozzle groups can be placed even slightly interlocked, whereby a complete nozzle queue formation in the cross direction of the glass is achieved. The nozzle groups can also be interlocked, so that they are turned at a smallish angle from a completely cross direction in regard to the channels. Between the nozzle groups some space remains for back air, where by the back air does not disturb the efficiency of the nozzle blasts. When all the nozzles are in right angle directed towards to glass, it is possible to let the nozzles down closer to the glass surface, while the distribution blow remains constant and while the heating efficiency of the blast air is high.
In the following the invention is disclosed with reference to the enclosed drawings, where:
For instance, the shaped sheets can be connected to each other by shot welding from spots on surfaces, where the sheets lean on each other, as surfaces 11 and edges 7. Casings 2 can be made broader than channels 1 whereby according to
Number | Date | Country | Kind |
---|---|---|---|
20061104 | Dec 2006 | FI | national |
20070187 | Mar 2007 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2007/000294 | 12/13/2007 | WO | 00 | 6/12/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/071833 | 6/19/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4230474 | Roth et al. | Oct 1980 | A |
6050814 | Lewandowski | Apr 2000 | A |
6064040 | Muller et al. | May 2000 | A |
6470711 | Jarvinen et al. | Oct 2002 | B1 |
7448232 | Jarvinen et al. | Nov 2008 | B2 |
7748237 | Zhao | Jul 2010 | B2 |
20040148969 | Nikander | Aug 2004 | A1 |
20060123848 | Lammi | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 9801398 | Jan 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100031703 A1 | Feb 2010 | US |