1. Field of the Invention
The invention relates generally to a headlamp assembly for a motor vehicle. More specifically, the invention relates to the cooling of a headlamp assembly by conducting heat from the light source to the exterior of the headlamp assembly via conductive heat sinks.
2. Related Technology
Headlamp assemblies have a light source, such as an incandescent lamp, a light emitting diode (LED) or high intensity discharge (HID) lamp, positioned within a headlamp chamber and electrically connected to a power source. The headlamp chamber is typically defined by a transparent or translucent lens, located forward of the light source, a reflector and/or housing located rearward and/or surrounding the light source. As used herein, the terms forward and rearward are referenced with respect to the position of the light source and the location of the area which the light from the source is intended to illuminate. Thus, light from the assembly is intended to illuminate an area in a forward position.
During an operation cycle of the headlamp assembly, the light sources and other components of the lamp generate heat while “on” and cool while “off”, causing the chamber to undergoes temperature fluctuation and causing the air located within to expand and contract. To maintain a relative-constant chamber pressure, the chamber typically includes at least one opening that permits an air exchange between the chamber and the ambient air. However, to prevent contaminants, such as dust and debris, from entering the chamber, the opening is typically relatively small and is covered with an air-permeable membrane.
In order to attain designed optimal performance of newer light sources, such as light emitting diodes (LED'S), and their electrical components in the lamp assembly, it is desirable to maintain the internal temperature of the lamp assembly below the maximum operating temperature. Therefore it is advantageous to provide the headlamp assembly with a mechanism that cools the chamber and the LED'S located therein.
Headlamp assemblies are typically secured to a portion of the vehicle frame that is adjacent to the engine compartment. The temperature within the engine compartment is often significantly higher than the temperature outside of the engine compartment (the ambient temperature). For example, during operation of the vehicle's various components, such as the engine and the engine cooling system, these components output heated air into the engine compartment. As another example, during periods of vehicle use and non-use, the air trapped within the engine compartment may become heated by solar energy. Therefore, it is advantageous to provide the headlamp assembly with a mechanism that isolates the chamber and the light sources located therein from the relatively high temperatures of the engine compartment.
In view of the above, it is beneficial to have a headlamp assembly that has a mechanism that effectively cools the mechanism's internal components while minimizing air exchange between the headlamp assembly chamber and the atmosphere and while isolating the chamber from the engine compartment and the relatively high temperatures associated therewith.
In overcoming the above limitations and other drawbacks, a headlamp assembly for a motor vehicle is provided that includes a lens and a housing that cooperate to define an inner chamber that is generally fluidly isolated from the atmosphere. A heat sink includes a base portion that is positioned within the inner chamber and a fin portion that extends to a position where it is exposed to ambient air. Supported on the base portion of the heat sink within the chamber is a light source. A reflector is positioned behind the light source and reflects light forward from the light source.
In one aspect, the headlamp assembly includes a flow channel positioned adjacent the housing. The flow channel is adapted to direct ambient air flowing therethrough. The fin portion of the heat sink extends into the flow channel such that heat from within the inner chamber is conducted through the heat sink to the air flowing through the flow channel.
In another aspect, air flow through the flow channel can be achieved by natural convention, forced convection, induced forced convection, or any combination thereof.
In still another aspect, the flow channel is positioned behind the housing and the fin portion of the heat sink extends rearward, through the housing into the flow channel.
In yet another aspect, a plurality of flow channels are spaced circumferentially around and positioned radially outward of the inner chamber. One heat sink is mounted within the inner chamber, positioned radially inward and adjacent each flow channel. A light source is mounted onto the base portion of each heat sink, and the fin portion of each heat sink extends radially outward, through the housing, into the adjacent flow channels. The light sources may be LEDs, and/or an alternate or additional light source, such as a high intensity discharge light (HID) may be positioned within the inner chamber, generally centered with respect to the light emitting diodes.
In still another aspect, the fin portion of the heat sink extends forward through the lens, such that heat from within the inner chamber is conducted through the heat sink to the air flowing across the lens. A plurality of light sources may be mounted onto the base portion of a common heat sink.
Further objects, features and advantages of this invention will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.
Referring to
The headlamp assembly 10 also includes a heat sink 18 mounted therein. The heat sink 18 includes a base portion 20 positioned within the inner chamber 16, and a fin portion 22, the latter extending outside the inner chamber 16 and being exposed to ambient air. As shown in
The base portion 20 of each heat sink 18 is positioned within the interior of the inner chamber 16, and the fin portion 22 of each heat sink 18 extends rearward, through the rear wall 14a of the housing 14, such that the fin portions 22 are exposed outside the inner chamber 16.
The headlamp assembly 10 includes surfaces that cooperate to focus light rays from light sources 24 into a beam having desired characteristics and direct the light rays towards the lens 12. As shown, a reflector 26 is positioned within the inner chamber 16 and is positioned relative to each light source 24. The reflectors 26 re-direct the light rays that hit the reflectors 26 in the forward direction, through the lens 12.
A plurality of light sources 24 are also positioned within the inner chamber 16. The housing 14 and the lens 12 are connected with one another such that the inner chamber 16 is substantially sealed from the atmosphere. The inner chamber 16 is, however, provided with pressure vents (not shown) that permit a relatively small amount of airflow into and out of the inner chamber 16 to account for air pressure fluctuations during temperature changes therein.
As mentioned above, the light sources 24 are preferably light emitting diodes (LEDs). Each light source 24, hereinafter just “LED 24”, is attached to a printed circuit board (PCB) 28 that includes electronic controls and connections for the LED 24. Furthermore, each LED 24 and the PCB 28 are supported on the base portion 20 of one of the heat sinks 18, such that the fin portion 22 of the heat sinks 18 conduct heat away from the LEDs 24, as will be further discussed below. The heat sinks 18 are constructed of a material having a relatively high thermal conductivity, such as metals, metal alloys, silicon, and graphite.
During operation of the headlamp assembly 10, each LED 24 generates heat that tends to increase the temperature of the air, components and structures located within the inner chamber 16. However, the LED 24 and/or other electronic components may experience diminished performance or failure if their maximum operating temperatures are exceeded. To reduce the temperature of these components, the light sources 24 are mounted onto the base portion 20 of the heat sinks 18 such that heat from the light sources 24 will be conducted through the base portion 20 to the fin portion 22 of the heat sinks 18. Ambient air outside the inner chamber 16 will flow across the fin portion 24 of the heat sinks 18 and will cool the fin portion 22, thereby dissipating the heat conducted from within the inner chamber 16.
To insure that ambient air is directed across or over the fin portion 22 of the heat sink 18, the headlight assembly 10 includes a flow channel 30 positioned adjacent the housing 14. As shown in
The flow channel 30 is adapted to direct ambient air flowing therethrough, wherein the fin portion 22 of the heat sinks 18 extend into the flow channel 30, such that heat from within the inner chamber 16 is conducted through the heat sinks 18 to the air flowing through the flow channel 30.
Referring to
An air duct or opening defined by the front portion of the vehicle body, such as the bumper, may be positioned near the inlet 34 to further promote the inflow of cool air. Alternatively, the air duct or opening may be positioned along the underside of the motor vehicle so as to capture naturally-flowing air during movement of the motor vehicle. To the extent possible, the inlet 34 is preferably positioned away from any heat source. For example, the inlet 34 is preferably located in a relatively forward location of the headlamp assembly 10, such as in a location adjacent to the lens 12 of the assembly 10. This location reduces the likelihood that the inlet 34 will capture heated air from the relatively hot components of the engine compartment before entering the flow channel 30.
Referring to
Referring to
Another embodiment of the headlamp assembly is shown generally at 50 in
The headlamp assembly 50 includes a heat sink 58 mounted therein. The heat sink 58 includes a base portion 60 positioned within the inner chamber 56, and a fin portion 62 extending outside the inner chamber 56 and being exposed to ambient air. As shown in
A with the previous embodiments, the headlamp assembly 50 includes surfaces that focus the light rays from a light source 64 into a beam having desired characteristics and directed toward the lens 52. As shown, these surfaces are part of a reflector 66 positioned relative to each light source 64, within the inner chamber 56. The reflectors 66 re-direct the light rays that hit the reflectors 66 to the forward direction, through the lens 52.
The housing 54 and the lens 52 are connected with one another such that the inner chamber 56 is substantially sealed from the atmosphere. The inner chamber 56 is, however, provided with pressure vents (not shown) that permit a relatively small amount of airflow into and out of the inner chamber 56 to account for air pressure fluctuations during temperature changes therein.
A plurality of light sources 64 are also positioned within the inner chamber 56. The light sources 64, are again preferably LEDs attached to PCB 68 that includes electronic controls and connections for the LED 64. Furthermore, each LED 64 and the PCB 68 are supported on the base portion 60 of the heat sink 58. As shown, one LED 64 is mounted to the top surface and one LED is mounted to the bottom surface of the base portion 60 of each heat sink 58. The fin portion 62 of the heat sinks 58 conduct heat away from the LEDs 64. The heat sinks 58 are constructed of a conductive material as previously discussed.
During operation of the headlamp assembly 50, heat generated by the LED 64 will be conducted through the base portion 60 of the heat sinks 58 to the fin portion 62 located outside the inner chamber 56. As the vehicle moves forward, ambient air is caused to flow across the front of the headlamp assembly 50 and across the fin portion 62 of the heat sinks 58, as indicated by arrows 70, and cool the fin portion 62 of the heat sinks 58, thereby dissipating the heat conducted from within the inner chamber 56.
Referring to
The headlamp assembly 80 includes a heat sink 88, mounted therein, having a base portion 90 positioned within the inner chamber 86, and a fin portion 92, extending outside the inner chamber 86 and being exposed to ambient air. As shown in
Within the inner chamber 86, a plurality of LEDs 94 and PCBs 98 are mounted onto the base portion 90 of each heat sink 88. A reflector 96 is also provided within the chamber 86 to reflect light from the LEDs 94 forward, through the lens.
Another embodiment of the headlamp assembly is shown generally at 100 in
The housing 104 includes a plurality of flow channels 108 formed therein. The flow channels 108 are spaced circumferentially around and positioned radially outward of the inner chamber 106. One heat sink 110 is mounted within the inner chamber 106, positioned radially inward of each flow channel 108. The heat sink 110 includes a base portion 112 and a fin portion 114. The base portion 112 is positioned within the inner chamber 106, and the fin portion 114 extends through the housing 104 and into the adjacent flow channel 108.
The headlamp assembly 100 includes surfaces that cooperate to focus the light rays from the light source 116 into a beam having desired characteristics and direct the light rays towards the lens 102. Referring to
At least one light source 116 is also positioned within the inner chamber 106. The light sources 116, are preferably LEDs. Each of the light sources 116, hereinafter just “LED 116”, is attached to a PCB 120 that includes electronic controls and connections for the LEDs 116. Furthermore, each LED 116 and PCB 120 is supported on the base portion 112 of one of the heat sinks 110. The fin portions 114 of the heat sinks 110 conduct heat away from the LEDs 116. The heat sinks 110 are constructed of a material having a relatively high thermal conductivity, such as metals, metal alloys, silicon, and graphite, thereby allowing the heat to easily travel from the LEDs 116, through the base portion 112, and to the fin portion 114 of the heat sinks 110.
During operation of the headlamp assembly 100, the LEDs 116 generate heat and increase the temperature of the air, components and structures located within the inner chamber 106. Therefore, the light sources 116 are mounted onto the base portion 112 of the heat sink 110 such that heat from the light sources 116 will be conducted through the base portion 112 to the fin portion 114 of the heat sink 110, within the flow channels 108. As the vehicle moves forward, ambient air will flow through the forward facing flow channels 108 and across the fin portions 114 of the heat sinks 110, as indicated by arrows 122, and cool the fin portion 114 of the heat sinks 110, thereby dissipating the heat conducted from within the inner chamber 106.
Referring to
The housing 14, 54, 84, 104 of any of the embodiments discussed above may also be made from a thermally conductive material to further aid in the conduction and dissipation of heat from the headlamp assembly. The housing 14, 54, 84, 104 may be made from metal, metal alloy, silicon, or graphite material, and more specifically, aluminum. In another example, the housing 14, 54, 84, 104 may include a plurality of conductive components, such as a metal, a metal alloy, or a graphite material, embedded within a base material, such as a polymer. In this design, the benefits discussed above are equally applicable.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1681153 | Johnston | Aug 1928 | A |
3309565 | Clark et al. | Mar 1967 | A |
3539799 | Dangauthier | Nov 1970 | A |
3639751 | Pichel | Feb 1972 | A |
4085248 | Zehender et al. | Apr 1978 | A |
4168522 | Van de Laarschot et al. | Sep 1979 | A |
4598347 | Peppers | Jul 1986 | A |
4724515 | Matsuki et al. | Feb 1988 | A |
4729076 | Massami et al. | Mar 1988 | A |
4780799 | Groh | Oct 1988 | A |
4931912 | Kawakami et al. | Jun 1990 | A |
4937710 | Hurley et al. | Jun 1990 | A |
4978890 | Sekiguchi et al. | Dec 1990 | A |
5172973 | Spada | Dec 1992 | A |
5174646 | Siminovitch et al. | Dec 1992 | A |
5406467 | Hashemi | Apr 1995 | A |
5458505 | Prager | Oct 1995 | A |
5758955 | Belliveau | Jun 1998 | A |
5857767 | Hochstein | Jan 1999 | A |
5947592 | Barlow | Sep 1999 | A |
6021954 | Kalwa et al. | Feb 2000 | A |
6045248 | Ashizawa | Apr 2000 | A |
6071000 | Rapp | Jun 2000 | A |
6183114 | Cook et al. | Feb 2001 | B1 |
6210024 | Shida | Apr 2001 | B1 |
6224247 | Ashizawa | May 2001 | B1 |
6367949 | Pederson | Apr 2002 | B1 |
6402346 | Liano et al. | Jun 2002 | B1 |
6419382 | Nakagawa et al. | Jul 2002 | B1 |
6497507 | Weber | Dec 2002 | B1 |
6558026 | Strazzanti | May 2003 | B2 |
6595672 | Yamaguchi | Jul 2003 | B2 |
6634771 | Cao | Oct 2003 | B2 |
6644842 | Yamaguchi | Nov 2003 | B2 |
6648495 | Hsu | Nov 2003 | B1 |
6676283 | Ozawa et al. | Jan 2004 | B2 |
6682211 | English et al. | Jan 2004 | B2 |
6773154 | Desai | Aug 2004 | B2 |
6860620 | Kuan et al. | Mar 2005 | B2 |
6864513 | Lin et al. | Mar 2005 | B2 |
6910794 | Rice | Jun 2005 | B2 |
20020141188 | Basey | Oct 2002 | A1 |
20020154514 | Yagi et al. | Oct 2002 | A1 |
20020167818 | Yoneima | Nov 2002 | A1 |
20030002179 | Roberts et al. | Jan 2003 | A1 |
20030218885 | Ishizaki | Nov 2003 | A1 |
20040012975 | Chase et al. | Jan 2004 | A1 |
20040085768 | Kai et al. | May 2004 | A1 |
20040120156 | Ryan | Jun 2004 | A1 |
20040145909 | Ognian et al. | Jul 2004 | A1 |
20040149054 | Soga et al. | Aug 2004 | A1 |
20040202007 | Yagl et al. | Oct 2004 | A1 |
20040213016 | Rice | Oct 2004 | A1 |
20050024864 | Galli | Feb 2005 | A1 |
20050094414 | Ishida et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2 701 756 | Feb 1993 | FR |
2 698 055 | May 1994 | FR |
2698055 | May 1994 | FR |
5 235224 | Sep 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20070091632 A1 | Apr 2007 | US |