The present subject matter relates to radio frequency identification (“RFID”) devices. More particularly, the present subject matter relates to converging the performance of differently configured RFID devices used in an electronic article surveillance (“EAS”) system.
In retail stores, an accurate count of the products on display and/or in storage is important. Additionally, it is important to have an effective anti-theft system in place. It is conventional to employ RFID tags and labels (which may be collectively referred to herein as “RFID devices”) to perform both of these functions.
An EAS system employing RFID technology typically has two primary read zones, each of which includes an associated RFID reader. One of the read zones is an area in the store where the products are presented to the consumer (which may be referred to herein as “inventory zone”), while the other read zone is an area at the exit of the store where any RFID devices that have not been suitably deactivated may be detected (which may be referred to herein as a “detection zone”) to trigger some type of alarm, indicating that an attempt is being made to steal them. When a customer properly purchases an item, the cashier either removes or deactivates the RFID device associated with it. If the RFID device is not removed or deactivated, an RFID reader or readers will read the device and cause an alarm or other alert to trigger in the detection zone.
Although the above-described systems are widespread, there are certain disadvantages. When using RFID devices/systems for an EAS system, one common problem is that the read range of an RFID device in certain circumstances can be large enough that an RFID device in the inventory zone can be read in the detection zone or vice versa. To reduce this risk, a transition zone is frequently provided between the inventory zone and the detection zone to physically separate the two read zones. However, on account of different RFID devices having greater sensitivity at an operating frequency and/or different articles having different effects on the performance of the associated RFID devices, it is necessary for the transition zone to be relatively large. The larger the transition zone, the smaller the inventory zone and thus the less merchandise the retailer can present for purchase. It would, thus, be advantageous to provide a system in which differently configured RFID devices have the same performance at the operating frequency or range of frequencies of an EAS system, thus allowing for the size of the transition zone to be decreased.
There are several aspects of the present subject matter which may be embodied separately or together in the devices, systems, and methods described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as may be set forth in the claims appended hereto.
Methods for configuring RFID devices for use in an EAS system are described herein. In some embodiments, the method includes (1) providing a plurality differently configured sample RFID devices that are to be tagged to different products monitored by the EAS system; (2) testing the performance of the plurality of differently configured sample RFID devices in a range of frequencies; (3) comparing the performance of the sample RFID devices in the range of frequencies with the performance of a plurality of target RFID devices in the range of frequencies; and (4) reconfiguring at least one or more of the plurality of differently configured sample RFID devices to converge the performance of the one or more sample RFID devices in the range of frequencies, when the performance of the one or more sample RFID devices in the range of frequencies is not sufficiently similar with the performance of complementary target RFID devices in the same range of frequencies. Reconfiguring the at least one or more of the plurality of differently configured sample RFID devices to converge the performance of the one or more sample RFID devices in the range of frequencies can include digitally reconfiguring the device, physically reconfiguring the device, or combinations thereof. Methods for digitally and physically reconfiguring the devices are described in more detail below.
The performance configuration of the plurality of target RFID devices is chosen in a manner such that, after reconfiguration, the performance of each sample RFID device of the plurality of differently configured sample RFID devices is similar even though they may be tagged to different merchandise/products. The one or more sample RFID devices that have been reconfigured are incorporated into the EAS system when the performance of the one or more sample RFID devices is sufficiently similar in the range of frequencies. Similarly, other sample RFID devices of the plurality of RFID devices are tested and compared with the performance of complementary target RFID devices and finally incorporated into the EAS system. When all the sample RFID devices work the same due to convergence of performance, the EAS system becomes more predictable. This helps in optimizing the system for allowing good detection at the detection zone (gates) of the EAS system.
In some embodiments, reconfiguration of the one or more sample RFID devices is achieved by digitally modifying the one or more sample RFID devices. In some embodiments, the digital modifications involve providing each of the one or more sample RFID devices with a unique digital indicator, which is linked to a digital database containing performance configuration information of a plurality of target RFID devices including that of the complementary target RFID devices corresponding to the one or more sample RFID devices. In some embodiments, the unique digital indicator is the same when the one or more sample RFID devices are tagged to set of products of same type. Further, the performance configuration information of the plurality of target RFID devices including the performance of the complementary target RFID devices is determined based on the type of products to which the corresponding plurality of sample RFID devices are tagged.
In some embodiments, reconfiguration of the one or more sample RFID devices in order to converge the performance of the one or more sample RFID devices is achieved by physically modifying the one or more sample RFID devices. In some embodiments, physical modifications include, but are not limited to, changing the configuration of an antenna, changing the size of an antenna, changing the configuration of the antenna including changing the material composition of the antenna etc., and combinations thereof.
In some embodiments, the reconfigured sample RFID devices are incorporated into the EAS system. The EAS system further contains RFID readers configured to read the one or more sample RFID devices, each containing the unique digital indicator, based on performance configuration information corresponding to the one or more sample RFID devices accessed from the digital database. This allows the EAS system including the RFID readers at the detection zone to digitally consider the behavior of all sample RFID devices, allowing the readers at the detection zone to sound an alarm if any product is being stolen. At the same time, it is ensured that there are no false alarms due to over reading.
In some embodiments, a method for manufacturing RFID devices for use in an EAS system is also described herein. The method includes providing a plurality of sample RFID devices having an identical initial configuration, reconfiguring one sample RFID device of the plurality of sample RFID devices to have a first final configuration, and reconfiguring another sample RFID device of the plurality of sample RFID devices to have a second final configuration when performance of the one or more sample RFID devices is different from that of performance of complementary target RFID devices and/or different from performance of one another. The sample RFID devices having the first and second final configurations are then incorporated into an electronic article surveillance (EAS) system, with the first final configuration being different from the second final configuration. The sample RFID devices having the first and second final configurations have sufficiently similar performance at a frequency or in a range of frequencies employed in the EAS system.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriate manner.
RFID devices of different sizes, materials, and/or construction can have a different combination of parameters such that, if an EAS system is optimized to reduce the transition zone size for one RFID device, it may not be effective for a differently configured RFID device. Even if it were practicable to render all of the RFID devices used in an EAS system identical, differently configured piece of merchandise will differently affect the performance of associated RFID devices. Thus, a wide variety of factors must be considered when attempting to reduce the size of the transition zone of an EAS system accommodating differently configured RFID devices and differently configured articles of merchandise.
In some embodiments, the performance of two differently configured RFID devices (or two similarly configured RFID devices associated to different pieces of merchandise/products or to the same type of merchandise/products in different locations) is tested over a range of frequencies.
It should also be understood that the particular range of frequencies over which the performance of an RFID device is considered may vary without departing from the scope of the present disclosure. However, it may be advantageous for the range of frequencies to be the same range of frequencies or to include the operating frequency used in the EAS system into which the RFID device is to be incorporated. If possible, it may be advantageous for the performance of an RFID device to be considered in the exact EAS system into which it is to be incorporated. If not possible, it may be advantageous for the performance of an RFID device to be considered in an environment that mimics the EAS system into which it is to be incorporated.
In some embodiments, a plurality of target RFID devices are provided as the reference for comparing performance and for convergence. For example, performance of the plurality of differently configured sample RFID devices can be converged with performance of complementary target RFID devices corresponding to each of the plurality of differently configured sample RFID devices. As per an aspect of the invention, the target RFID devices are chosen such that convergence of performance of the sample RFID devices with the performance of the complementary target RFID devices results in overall convergence of performance of all the differently configured sample RFID devices. In one embodiment, the plurality of differently configured sample RFID devices tagged to different products and having different read ranges are reconfigured so that the plurality of differently configured sample RFID devices have the same read range over a range of frequencies, thereby resulting in convergence of performance. The convergence of performance is done to ensure that performance of all sample RFID devices is similar even when they are attached to different merchandise/products made of different materials. In one embodiment, the performance of the plurality of differently configured sample RFID devices can be converged with a single target RFID device. In another embodiment, the performance of one or more sample RFID devices of the plurality of differently configured sample RFID devices can be converged with performance of complementary target RFID devices. The performance configuration information corresponding to the plurality of target devices is stored in a digital database that can be accessed for completing the convergence of performance. The nature of merchandise/products to which the plurality of differently configured sample RFID devices are to be tagged is considered while determining the performance configuration information of the plurality of target RFID devices.
Typically, the configuration of the second sample RFID device 12 is different from the configuration of the first sample RFID device 10, which may include one or more of a difference in the configuration (including shape, size, and material composition) of its antenna; the configuration (including sensitivity, input capacitance, and identifier) of its RFID chip; the nature and configuration of associated non-functional components; the nature of the piece of merchandise/product to which it is associated; and the location at which it is connected to the associated piece of merchandise. It should be understood that the foregoing list is merely exemplary and that there may be other differences between the first sample RFID device 10 and second sample RFID device 12.
As can be seen by comparing
In some embodiments, one or more of the plurality of differently configured sample RFID device can be reconfigured (digitally and/or physically as discussed above) to ensure that the transition zone of the EAS system in relatively smaller. For example, in the present embodiment, both of the first and second sample RFID devices 10 and 12 is reconfigured in order to converge (i.e., render more similar) their performance over the tested range of frequencies.
In some embodiments, reconfiguration for converging performance of the plurality of differently configured sample RFID devices can be performed by individually testing and comparing the sample RFID devices with one another, and modifying each of the sample RFID devices. In other embodiments, reconfiguration for converging performance of the plurality of differently configured sample RFID devices can involve testing followed by comparison with the complementary target RFID devices, and modifying each of the plurality of differently configured sample RFID devices based on the performance configuration of each of the complementary target RFID devices. The performance configuration of the plurality of target RFID devices is chosen in a manner such that after reconfiguration the performance of each sample RFID device of the plurality of differently configured sample RFID devices is similar even though they may be tagged to different merchandise/products.
In some embodiments, reconfiguration of the plurality of differently configured sample RFID devices involves digitally modifying one or more sample RFID devices with different performance configurations. Digital modifications include, but are not limited to, providing the one or more sample RFID devices with a unique digital indicator, linked to a digital database containing performance configuration information of a plurality of target RFID devices including that of the complementary target RFID devices corresponding to the one or more sample RFID devices. The plurality of differently configured sample RFID devices thus reconfigured are incorporated into EAS system. The EAS system further contains RFID readers configured to read the one or more sample RFID devices each containing the unique digital indicator, based on performance configuration information corresponding to the one or more RFID devices accessed from the digital database. This allows the EAS system including the RFID readers at the detection zone to digitally consider the behavior of all sample RFID devices disposed in the inventory zone, allowing the readers at the detection zone (gates) to sound an alarm if any product is being stolen. At the same time, it is ensured that there are no false alarms due to over reading.
In another embodiment, reconfiguration of the plurality of differently configured sample RFID devices involves making physical modifications to one or more sample RFID devices. For example, the particular physical modifications made to each sample RFID device 10, 12 may vary without departing from the scope of the present disclosure. In this example, the configuration of the antenna of one or both of the RFID devices 10 and 12 may be changed. This may include changing (either increasing or decreasing) the size of the antenna (which may include changing the surface area and/or thickness of the antenna), the shape of the antenna (including the shape of the outer perimeter of the antenna and the number, size, and/or configuration of any voids defined within the outer perimeter), and/or the material composition of at least a portion of the antenna (e.g., using a conductive ink instead of an aluminum foil or using different materials in different regions of the antenna instead of using the same material at all locations).
Other possible modifications include (but are not limited to) the nature and configuration of associated non-functional components such as a piece of merchandise to which the first sample RFID device is associated, and the location at which the first sample RFID device is connected to the associated piece of merchandise. For example, the available mounting space for the first sample RFID device may have areas adjacent to the space with different materials in them, such as metallic items, conductive fabrics, areas of a denser high dielectric constant material, etc. The performance of the first sample RFID device depends upon the its position with respect to these other materials in and adjacent to the mounting space, such that the position of the first sample RFID device with respect to these areas may be changed to modify the performance of the first sample RFID device, thus contributing to convergence of the first sample RFID device with the overall set of sample RFID devices to be used in the EAS system.
Reconfiguring a sample RFID device may also (or alternatively) include changing one or more characteristics of the RFID chip, such as its sensitivity, input capacitance, and an identifier of the RFID chip. While physical changes to the sample RFID device may require modifications to be made in a manufacturing facility, certain modifications to the RFID chip of the sample RFID device may be done at the testing site. For example, in one exemplary embodiment, the sample RFID device is tested by associating it to a piece of merchandise and placing into the inventory zone of the EAS system into which the sample RFID device is to be incorporated (if possible) or into an environment approximating such an EAS system. An RFID reader of the EAS system configured to detect sample RFID devices only in the detection zone is then activated while the store or environment is in a defined state (e.g., free of customers) and any sample RFID devices in the inventory zone tags that can be read are detected. The EAS system (or a system local to the inventory zone) can then send commands to the RFID chips of the detected sample RFID devices that can change selected parameters (e.g., chip sensitivity, input capacitance, and identifier) to eliminate the sample RFID device from being read by the RFID reader associated with the detection zone, thereby increasing convergence. In another exemplary embodiment, the sample RFID devices in the inventory space that can be read by the RFID reader of the detection zone are detected, but the same sample RFID devices are also detected by an RFID reader associated with the inventory zone (e.g., an overhead reader system) at the same time. Variations in the parameters of some or all of the RFID chips of the detected sample RFID devices are then made to maintain inventory performance but eliminate false alarm reads from the RFID reader associated with the detection zone of the EAS system.
For example, in
The point at which the performance of two differently configured sample RFID devices is deemed to be sufficiently similar so as to render them suitable for use in the same EAS system may vary without departing from the scope of the present disclosure. A higher degree of similarity may be required if a smaller transition zone is desired, while a lesser degree of similarity may be acceptable if the transition zone may be larger. Other factors (e.g., the nature of the RFID reader(s) employed in the EAS system and the importance of avoiding false alarms) may also be considered in determining the necessary degree of similarity between the performances of two differently configured sample RFID devices over a range of frequencies. It may be the case that a single redesign of the sample RFID devices may not be sufficient, but that multiple iterations of testing the reconfigured sample RFID devices and then reconfiguring one or more of them may be required before their performances are deemed to have converged.
In some embodiments, differently configured sample RFID devices to be incorporated into a common EAS system may be manufactured from the same initial sample RFID device template. The template may have an initial configuration that is different from at least one of (if not all of) the final configurations, e.g. a first final configuration of the sample RFID devices to be incorporated into the EAS system. Preferably, the template has a configuration allowing for it to be built in large volume at low cost, possibly with a configuration that is sufficiently simple or basic to allow it to be reconfigured for different RFID devices used in not only one EAS system, but for differently configured sample RFID devices to be used in a plurality of different EAS system. Depending on the desired final configuration, the template can be modified by any approach, which may include methods such a cutting to change the overall shape of the antenna, laser modification of the conductors or addition of over-printed materials (e.g., as conductors, resistive materials, dielectrics, and magnetic materials) to change performance, and so on to create a set of differently configured sample RFID devices having a second final configuration with converging performance over a range of frequencies for a particular EAS system and product mix. For example, in one embodiment, at least one of the first and second final configurations includes an over-printed resistive material that is not included in the initial configuration of the sample RFID device template. In another embodiment, wherein at least one of the first and second final configurations includes an over-printed dielectric material that is not included in the initial configuration. In one more embodiment, at least one of the first and second final configurations includes an over-printed conductive material that is not included in the initial configuration. In yet another embodiment, at least one of the first and second final configurations includes an over-printed magnetic material that is not included in the initial configuration.
It will be understood that the embodiments described above are illustrative of some of the applications of the principles of the present subject matter. Numerous modifications may be made by those skilled in the art without departing from the spirit and scope of the claimed subject matter, including those combinations of features that are individually disclosed or claimed herein. For these reasons, the scope hereof is not limited to the above description but is as set forth in the following claims, and it is understood that claims may be directed to the features hereof, including as combinations of features that are individually disclosed or claimed herein.
The present application is a 371 of International Application No. PCT/US2021/019561, which was published in English on Sep. 2, 2021, and claims the benefit of U.S. Provisional Patent Application No. 62/981,211 filed Feb. 25, 2020, both of which are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/019561 | 2/25/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/173772 | 9/2/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060226982 | Forster | Oct 2006 | A1 |
20060273902 | Shafer | Dec 2006 | A1 |
20070194930 | Hunt et al. | Aug 2007 | A1 |
20080048863 | Copeland | Feb 2008 | A1 |
20090140860 | Forster | Jun 2009 | A1 |
20100052865 | Eckstein | Mar 2010 | A1 |
20120001814 | Copeland | Jan 2012 | A1 |
20120044074 | Mulla | Feb 2012 | A1 |
20120274448 | Marcus et al. | Nov 2012 | A1 |
20200042754 | Trivelpiece et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
1791895 | Jun 2006 | CN |
209767550 | Dec 2019 | CN |
1875408 | Jan 2008 | EP |
2008-539510 | Nov 2008 | JP |
2010-086166 | Apr 2010 | JP |
2004104958 | Dec 2004 | WO |
2006115756 | Nov 2006 | WO |
2012148686 | Nov 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability dated Aug. 30, 2022 issued in corresponding IA No. PCT/US2021/019561 filed Feb. 25, 2021. |
International Search Report and Written Opinion dated Jun. 16, 2021 issued in corresponding IA. |
Number | Date | Country | |
---|---|---|---|
20230079671 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
62981211 | Feb 2020 | US |