The field of the disclosure generally relates to a convergent spray nozzle apparatus and, more particularly, relates to an apparatus and method for preparing food in an automated fashion with a convergent spray.
Many foods today are prepared in a highly automated fashion. Examples include industrial sized bakeries, confectionaries and the like. In many of these instances, it is necessary to spray or otherwise apply various ingredients and seasonings to the food product being prepared. One example would be in the preparation of snack products, such as potato chips. After the potato chips have been processed, cut and deep fried, baked or otherwise prepared, it is often desirable to provide seasonings such as salt, spices or other flavorings often in powder form, to the prepared potato chip. In order to ensure that the seasonings adhere to the food product being prepared, a binder of sorts is often used as well. In the case of snack products, such a binder could be provided in the form of oil such as corn oil, vegetable oil, or the like. The binder and seasoning can be mixed prior to being dispersed or being separately applied.
However, currently, there are no commercially available foodspray applicators which can spray such seasonings, binders and additives in a uniform, adjustable and highly automated fashion. It would therefore be advantageous if a foodspray applicator were to be created which could convergently spray oils, liquid sugars, dry seasonings, and other items uniformly upon a food product being prepared.
In accordance with one aspect of the disclosure, a food preparation system is disclosed which comprises a conveyor, at least one spray nozzle assembly, a supply of edible material, and a source of fluid. The conveyor is adapted to transport a supply of food product. The spray nozzle assembly is positioned proximate the conveyor. The supplies of edible material and fluid are each connected to the spray nozzle assembly. The spray nozzle assembly includes a first conduit, and a second conduit. The first conduit expels the fluid. The second conduit expels the edible material. The first and second conduits are arranged to produce an edible material spray pattern for applying to the food product.
In accordance with another aspect of the disclosure, a spray nozzle assembly for applying edible material to food products is disclosed which comprises a first conduit, and a second conduit. The first conduit is adapted to be connected to a supply of fluid. The second conduit is adapted to be connected to a supply of edible material.
In accordance with another aspect of the disclosure, a method of preparing food products is disclosed which comprises the steps of conveying a supply of food product, positioning at least one spray nozzle assembly over the food product, directing a supply of binder through the spray nozzle assembly directing a supply of edible material through the spray nozzle assembly, mixing the binder and edible material downstream of the spray nozzle assembly, and depositing the edible material and binder on the food product.
These and other aspects and features of the disclosure will become more apparent upon reading the following detailed description when taken in conjunction with the accompanying drawings.
While the following disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the disclosure to the specific forms disclosed but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the disclosure as defined by the appended claims.
Referring now to the drawings, and with specific reference to
The system 20 may include a conveyor to transport a food product 24 along a production line. As shown in
As also shown in
The food preparation system 20 may include a supply 34 of edible material such as a hinder like oil, or other solid liquid or gaseous product to be applied to the food product or to assist with the application of the seasoning to the food product 24. The food preparation system 20 also includes a supply 36 of a fluid, such as compressed air 36, to assist with the application of the seasoning and, if utilized, the oil to the food product 24. Such supplies 32, 34, 36 can be provided in any number of conventional forms with the depiction providing the supply 36 of air in the form of an industrial air compressor 37, the supply 34 of oil in the form of a tank 38, and the supply 32 of seasonings in the form of a loss-in-weigh feeder or hopper 39. The air compressor 37 can be a conventional design adapted to produce any desired air pressure, such as but not limited to 80-115 psig. The hopper 39 could be provided with a screw conveyor 40 to enable the seasoning 32 to be moved through its outlet 41. The seasoning can fall by gravity feed into a ventura air eductor 70 and be carried by eductor vacuum to the spray nozzle assembly 28. A valve 41 or the like may be used to direct the compressed air to the spray nozzle assemblies 28 and the supply line 42 as will be described in further detail herein. A metering pump 43 may he provided to direct the oil from the tank 38 through a flow meter 78 and then to the spray nozzle assemblies 28 in a dynamically controllable manner.
Referring now to
With reference now to
As shown best in
In one embodiment, the fan spray pattern 56 results in an angular arc of sixty five degrees, but it is certainly possible to tailor the arc as desired by adjusting the air pressure or size and shape of the nozzle aperture. Concurrent with the oil spray, seasoning carried by compressed air is discharged from the outer conduits 42A and 42B in desired spray patterns 58 and 60, which may overlap and converge with the spray pattern 56. To facilitate this, the conduits 42A and 42B may include outlets from conduits 42A and 42B which are inwardly angled toward the conduit 48. For example, the spray patterns could have fan shapes. As with spray pattern 56, other types of spray patterns can be mounted, including, but not limited to, cylindrical, conical, ribbon, intermittent, oscillating or the like.
As a result of the foregoing, directly in front of the spray nozzle assembly 28 the oil and seasoning converge and mix prior to being deposited on the potato chips. To facilitate proper alignment of the outer conduits 42A and 42B relative to the central conduit 48, and their resulting spray patterns, a plate 62 may be provided proximate a front side of the nozzle assemblies 28. As shown in
As depicted in
The food preparation system 20 can also include a protective cover 68 extending across the array of spray nozzles 28 and support bar 30 to thus ensure the sanitary nature of the operation. The protective cover 68 can be manufactured of stainless steel or other sterilizable and easily cleanable material. In addition, the nozzle 28 and cleaning system 66 are also preferably manufactured of stainless steel such as, but not limited to, 316 stainless steel for similar reasons.
In operation, the food preparation system 20 can be used to coat a food product 24 with an edible material 32 such as a seasoning or other powder, and can help secure such seasonings or powder to the food product 24 using another edible material 34 such as a binder like oil. By spraying the binder 34 and seasoning 32 in converging spray patterns, the two are able to sufficiently mix prior to being deposited upon the food product 24. This prior mixing helps ensure a uniform coating of both the seasoning and oil on the food product itself. More specifically, once the food products 24 are communicated to the tumbler 22, they are exposed to the convergent sprays. In the tumbler 22, the food product 24 is continuously overturned or otherwise presented for coating with the oil 34 and seasonings 32. Concurrent with such motion, gun trigger 52 is actuated to thus relieve the pressure within the conduit 48, thereby expelling the oil 34 and air 36 through the nozzle 54. In so doing, the oil 34 is immediately atomized and discharged from the nozzle 54 in the desired spray pattern 56.
Adjacent the nozzle 54, the conduits 42A and 42B similarly spray the seasoning 32 in spray patterns 58 and 60. By controlling the air pressure within the conduits 42A and 42B, the spray patterns 58 and 60 are tailored so as to converge with the spray pattern 56 a suitable distance in front of the nozzle 54, and prior to application upon the food product 24 moving within the tumbler 22. Moreover, by providing a plurality of nozzle spray assemblies 28 across the lateral width 26 of the tumbler 22, the uniform coating of the seasonings and binder are assured across the entire width and thus volume of the food product 24 being processed within the tumbler 22. It is to be further understood that other alternative orientations are possible. For example, multiple rows of nozzle assemblies 28 could extend along the lateral width 26 of the tumbler, or in another direction across the tumbler. Moreover, the spray nozzle assemblies 28 could be mounted directly in the tumbler 28. One of ordinary skill in the art will readily understand multiple other mounting orientations are possible with the scope of the present invention.
It can therefore be seen that the teachings of the disclosure can be used to provide a food preparation system ensuring a consistently produced application of seasoning and binder materials to a food product being prepared. Various modifications thereof can be employed as will become readily apparent to one of ordinary skill in the art.
Number | Date | Country | |
---|---|---|---|
Parent | 11039164 | Jan 2005 | US |
Child | 12688085 | US |