I. Field of the Invention
The present invention relates to wireless communication systems and methods, and in particular to assistive listening systems that facilitate communication in noisy environments.
II. Discussion of Related Art
To facilitate communication in noisy environments, wireless systems may be used to effectively receive and transmit audio signals. In such systems, sounds produced by an audio source are modulated and transmitted wirelessly over, for example, an infrared (IR) or radio signal. At the destination, this signal is intercepted by a receiver that reconstructs the original sounds and plays them back. This method is employed by many commercially-available headphone systems such as the Sony MDR-IF240RK Wireless Headphone System and the Koss HB60 Infrared Clip-On Wireless Headphones.
This method can be used for two-way communication as well. Headsets like the Etymotic Research Link-It and the Comlink Personal Sound Enhancer can produce audio signals using a microphone and wireless transmitter and can also receive signals using a built-in wireless receiver and earpiece speaker.
However, many-to-many communication presents complexities that do not arise in the unidirectional and bidirectional cases described above. An impediment to the development of a system for multi-way signal transmission is the problem of co-channel interference. Traditional signal transmission using amplitude, frequency, or phase modulation of radio-frequency carriers is designed to work with one carrier signal at a time. Mixing multiple carriers in a demodulator can result in badly distorted output.
Systems and methods are described here for wireless communication, including multi-way wireless communication that reduces distortion caused by co-channel interference. A talker's speech is picked up by an individual body-worn microphone and transmitted wirelessly over a relatively wide angle, but short range. Each listener wears a receiver that has a narrow reception angle. The received signal can be converted to an acoustic signal by an earphone. Each person in the conversation can have both a transmitter and a receiver, enabling multi-way wireless signal transmission for speech communication in noisy settings.
The use of a directional receiver allows the use of a simple frequency modulation (FM) scheme and provides the user with a mechanism for selecting the source to be heard. The directionality of the receiver reduces the problem of signal distortion.
A directional receiver will attenuate sources outside of a limited angular range relative to those within the limited angular range, e.g., angles relative to a straight-ahead direction, but there can still be some mixing of modulated carriers. However, FM is known to be highly resistant to co-channel interference because of an effect called “FM capture.” The capture effect is responsible for the much higher quality and noise-immune reception of an FM radio broadcast compared to AM.
The high degree of directionality that can be easily achieved with an IR receiver, e.g., by use of a lens or shaped ‘blinders’, together with the strength of the FM capture effect, supports the use of FM to facilitate this multi-way application.
In other embodiments, a receiving system can have multiple directional IR receivers for dividing a room or other region into sectors, and an FM demodulator (individually, or separate circuits collectively) for receiving IR signals in each region and providing them to other equipment, such as a recording device or a transmission device, e.g., as part of a teleconferencing system.
Other features and advantages will become apparent from the following detailed descriptions and drawings.
a and
A simplified block diagram of the transmitter subsystem 100 and the receiver subsystem 200 is shown in
a and 3b show an embodiment including a one-piece unit utilizing a short bifurcated boom. The boom can be constructed so as not to impede the view of and access to the mouth during eating. The boom contains a noise-canceling microphone. The photodiode receiver is located on a flexible gooseneck to accommodate situations such as automobile travel when the talker is not in front of the listener. The receiver can be provided within a tube with a geometry that defines a limited angular range of reception. The gooseneck would normally be oriented in the same direction as the IR emitter support prong in order to facilitate easy aiming by pointing the head in the general direction of the talker. An earpiece can be designed to permit left or right ear operation.
The unit can have fixed horizontal and also vertical angles of reception that receive signals in a limited angular range while substantially attenuating signals received from sources at other angles outside that range. In other embodiments, the unit can include controls that allow the user to adjust the vertical and horizontal reception angles of the receiver. Wider reception angles provide increased freedom of movement by allowing for the vertical and horizontal head motions of the user. On the other hand, using a wider reception angle can sacrifice some of the benefits of directionality. The horizontal angle can be up to +/−45° from a center line, and be variable in a range that is within a range of about +/−10° to +/−45° from a center line (e.g., in front of the user), or within a range within about +/−20° up to +/−35° from a center line. A vertical angle can be up to about +/−45° , or some smaller angle. The controls can operate in a continuous manner, such as moving a microphone continuously within a tube, or through a set of discrete steps. The control can be implemented by altering the receiver from one setting to another, or by using multiple receivers with different characteristics such that the control selects one of the receivers to use. The controls can be operated and adjusted by a user during operation, or they can be used to set angular parameters in advance for all later uses.
Testing with a talker equipped with a microphone and IR transmitter, and a listener at a distance of 1 meter equipped with an IR receiver and earphone, indicates that speech-to-noise ratio is improved by approximately 20 dB over that of the direct acoustic signals measured at the ears of the listener. This improvement can generally be maintained with a vertical reception angle of +/−45° and a horizontal reception angle of +/−20° for a full angle of about 40° . However, the ideal reception angle depends on user preferences and environmental conditions, and the user can use the angle controls to adjust the device accordingly.
Since each of the individual transmitter systems 551-554 uses a Voice Operated Switch (VOX) to switch on its omnidirectional emission, the carrier detect signals within the multi-channel conference unit 500 will be active only when the given look direction is in view of an individual transmitter system that is actively conveying speech sounds, thus enabling the common mixing bus to contain only active speech signals and reducing room noise from open microphones having no active speech.
In this conferencing system, the individual units 551-554 function as described above, with broad or omnidirectional emission and relatively narrow reception, as pictured in
It will be appreciated that the scope of the present invention is not limited to the above-described embodiments, but rather is defined by the appended claims; and that these claims will encompass modifications of and improvements to what has been described. For example, different configurations of transmitter and receiver can be used on an individual.
This application claims priority to U.S. Provisional Application 61/126,306, filed May 5, 2008, and U.S. Provisional Application No. 61/169,535 filed Apr. 15, 2009, the entire contents of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61126306 | May 2008 | US | |
61169535 | Apr 2009 | US |