Conversion display drive mechanism

Information

  • Patent Grant
  • 6360463
  • Patent Number
    6,360,463
  • Date Filed
    Thursday, October 29, 1998
    25 years ago
  • Date Issued
    Tuesday, March 26, 2002
    22 years ago
Abstract
A convertible sign mechanism is provided which comprises a convertible sign member that is rotatable about an axis. The convertible sign member is capable of rotating at a variable velocity. A motor is operatively connected to a drive shaft, which is connected to a cam follower. The cam follower is slidably connected to a member receiving the cam follower, with the receiving member being connected to an output gear. The output gear is connected to a drive gear, which together provide a reduction ratio of at least 2:1.
Description




FIELD OF THE INVENTION




The present invention relates to a variable speed rotary drive mechanism. More specifically, the present invention includes a drive mechanism useful in operating display sign elements, such as those on prismatic displays, so as to vary the speed of rotation from a maximum velocity occurring during the changing of display surfaces to a minimum velocity occurring as the position corresponding to the display of the desired surface is approached.




BACKGROUND OF THE INVENTION




There are several known kinds of convertible signs, one type of which creates a display arrangement comprising single or multiple prisms, each of which are mounted at opposite longitudinal ends and rotatable about their longitudinal axis. in the case of multiple prisms, each prism is part of an equal sequence in a frame, the prisms residing beside each other. The sides of the prism are oriented in a permanently occurring sequence forming a number of displays corresponding to the number of side surfaces of the single prism. Such a sign necessarily includes a drive motor for synchronous rotation of the prisms via a transmission.




Displays of this type usually comprise triangular aluminum prisms, which rotate in an aluminum frame and show three displays in permanently recurring sequence. The prisms can be dismounted and exchanged. Due to the triangular shape of the prisms, three different views can be shown. The display arrangement can be mounted with its frame standing free, on walls or on roofs of buildings. Also, single prism signs are typically found on scoreboards in arenas or the like.




Known display arrangements of this type are typically driven by an electric motor, and the prisms are rotated synchronously by a gear transmission in such a manner that the sides of the respective prisms belonging to the same picture are shown simultaneously and form a display. The gear transmission ensures synchronous rotation of each prism.




A gear transmission, however, involves certain disadvantages. A desirable characteristic of most convertible signs is that they operate noiselessly, particularly when the displays are mounted on buildings. A gear transmission for operating noiselessly requires good lubrication. This requirement would be difficult to attend to at many sign locations, because of the need for periodic service and such signs in most cases are positioned in places of difficult access. The problem of access has created a need for mechanisms of high durability and reliability, along with the continuing requirement for accurate registration of the sign elements and the constant need to start, rotate and stop the sign display. Experience in the field has demonstrated the need to convert this inherently complex mechanical operation into one having as much reliability and simplicity as possible.




A recent solution to these problems is disclosed in commonly assigned U.S. Pat. No. 5,343,645, issued to Huber. There is disclosed a chain driven gear drive system, including off-center gear elements. These gear elements are rotated to translate various potential speeds to a mounting gear, on which a sign member is mounted. As a result of this structure, the sign member rotates through successive 120° turns while varying the speed of rotation from a maximum velocity occurring during the changing of display surfaces to a minimum velocity occurring as the position corresponding to the new display surface of the sign member, of the sign is approached.




What is needed is an alternate drive mechanism for driving display sign arrangements and other devices that require frequent start and stops.




SUMMARY OF THE INVENTION




The present invention provides an alternate variable speed rotary drive mechanism for operating display sign elements, such as those on prismatic displays, so as to vary the speed of rotation from a maximum velocity occurring during the changing of display surfaces to a minimum velocity occurring as the position corresponding to the display of the desired surface is approached. The variable speed rotary drive mechanism can also be used to drive other devices requiring frequent starts and stops, such as conveyors.




In one embodiment in accordance with the invention, a convertible sign mechanism is provided which comprises a convertible sign member that is rotatable about an axis. A drive means is connected to the convertible sign member for rotating the convertible sign member at a variable velocity, with the drive means operating continuously throughout the rotation of the convertible sign member. The drive means includes a motor, a drive shaft operatively connected to the motor, a cam follower operatively connected to the drive shaft, a member configured to receive the cam follower in a slidable engagement, an output gear operatively connected to the member; and a drive gear operatively connected to the output gear and to the convertible sign member. The output gear and the drive gear provide a reduction ratio of at least 2:1.




These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying description, in which there is described a preferred embodiment of the invention.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a perspective view of the convertible sign mechanism in accordance with the invention;





FIG. 2

is a side view of the of the mechanism, with the motion transmission device in a first position;





FIG. 3

is a schematic view of the motion transmitting device in a first position;





FIG. 4

is a schematic view of the motion transmitting device in a second position;





FIG. 5

is a schematic view of the motion transmitting device in a third position; and





FIG. 6

is a schematic view of the motion transmitting device in a fourth position.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIG. 1

, a convertible sign mechanism according to the principles of the invention is shown generally at


10


. The convertible sign mechanism


10


includes a multifaceted prismatic display member


12


, which can have two or three sides, but in the specific example is shown to have three-sides


14


,


16


,


18


. The sides


14


,


16


,


18


typically contain different information, and when in a multiple prismatic sign, are typically ganged or combined together with similar display members in a coordinated manner to form the desired sign. The mechanism


10


further includes a drive mechanism


20


for rotating the display member


12


about its central axis so that each side


14


,


16


,


18


is periodically brought into view.




With reference now to

FIGS. 1 and 2

, the drive mechanism


20


generally includes a suitable electric motor


22


having a drive shaft


24


with a pinion gear


26


fixed thereto, such that the pinion gear


26


is rotatably driven by the motor


22


. The motor


22


is typically timed by conventional timing devices or the motor can be under computer control. An endless chain


28


is disposed over the drive gear


26


and an input gear


30


that is fixed to an input shaft


32


which forms the input to a variable speed, motion transmitting device


34


. An output shaft


36


extends from the device


34


and has an output gear


38


fixed thereon so as to rotate with the output shaft


36


. A second endless chain


40


is disposed over the output gear


38


and a large diameter drive gear


42


that is fixed to a shaft


44


which is connected to the display member


12


.




When the motor


22


is activated, the drive shaft


24


rotates the pinion gear


24


which drives the endless chain


28


. The endless chain


28


in turn drives the input gear


30


, thereby rotating the input shaft


32


. The motion transmitting device


34


continuously varies the rotational speed input by the input shaft


32


, so that the rotational speed of the output shaft


36


and the output gear


38


are continuously varied. The rotation of the output gear


38


is transmitted by the endless chain


40


to the large diameter drive gear


42


which drives the shaft


44


thereby causing the display member


12


to rotate so as to change the side


14


,


16


,


18


that is viewed.




A concern when driving members that are periodically stopped and started, such as prismatic display members and conveyor systems which stop and start at fill stations, is that the initial start of movement from a fully stopped condition be gradual. The movement speed should eventually build up to a maximum, and then gradually decrease as the driven member starts approaching its next intended position. Applicant's have found that this gradual increase and gradual decrease of movement speed avoids the shock of abrupt starts and stops, and minimizes wear on components.




In order to accomplish the gradual increase and gradual decrease of the rotational speed of the display member


12


, the motion transmitting device


34


is specifically designed to convert the constant speed rotational input provided by the input shaft


32


into a smooth, cyclically varying speed, accelerating-decelerating rotational output to the output shaft


36


.




With reference specifically to

FIG. 2

, it is seen that the motion transmitting device


34


includes a pair of spaced side walls


46


,


48


, each of which includes a bearing


50


,


52


associated therewith for rotatably supporting the respective shafts


32


,


36


. A cam follower arm


54


is suitably fixed to the end of the input shaft


32


, such as by a key, so as to rotate with the input shaft


32


. A follower


56


, such as a rotating bearing or a sliding bearing, is fixed to the follower arm


54


and is spaced radially of the axis of the input shaft


32


. A cam arm


58


is suitably fixed at one end thereof to the end of the output shaft


36


, such as by a key, whereby the cam arm


58


is eccentrically mounted. The cam arm


58


includes a slot


60


formed therein which extends longitudinally the length of the cam arm


58


, and the follower


56


is slideably received within the slot


60


. Thus, as the input shaft


32


rotates, the output shaft


36


rotates as a cyclically varying speed due to the cam and follower arrangement.




Preferably, the follower


56


is spaced from the axis of the input shaft


32


a distance slightly greater than the distance between the axes of the input and output shafts. Thus, as the input shaft


32


rotates, the cam follower arm


54


and the follower


56


rotate therewith. Rotation of the follower arm


54


and follower


56


causes the cam arm


58


and the output shaft


36


to rotate. The rotational speed of the input shaft


32


can be assumed to be constant, and therefore due to the arrangement of the device


34


, the rotational speed of the output shaft


36


will vary from a maximum when the follower arm/follower


54


,


56


and the cam arm


58


are in the position shown in

FIGS. 2 and 3

, to a minimum when the follower arm/follower and cam arm are displaced 180° to the position shown in FIG.


5


. The transition between maximum and minimum rotational speeds of the output shaft


36


occurs in an extremely smooth manner due to this arrangement, such that abrupt starts and stops are avoided.




The variation in rotational speed occurs based upon the distance of the follower


56


from the axis of the output shaft


36


. Referring now to

FIGS. 3-6

, when the follower


56


is at its maximum distance from the output shaft axis, as illustrated in

FIG. 3

, the torque acting on the cam arm


58


is greatest since the moment arm D of the force acting on the cam arm is at its maximum. As the elements rotate to the position shown in

FIG. 4

, the follower


56


is moving toward the output shaft


36


, and thus the rotational speed of the output shaft


36


is continuously decreasing. When the elements reach the position shown in

FIG. 5

, the follower


56


has moved to its closest distance to the output shaft axis. Therefore, the torque acting on the cam arm


58


is at its minimum, since the moment arm of the force is at its minimum. As the elements rotate from the position shown in

FIG. 5

to the position shown in

FIG. 6

, the follower


56


moves away from the output shaft


36


so that the rotational speed thereof gradually increases.




It is important that the follower


56


be spaced from the axis of the input shaft


32


a distance slightly greater than the distance between the axes of the input and output shafts, i.e. the axis of the follower


56


, should not coincide with the axis of the output shaft


36


. This prevents binding of the follower


56


in the cam arm


58


, which would stop rotation of the output shaft


36


and possibly damage the components.




Assuming that the display member


12


is initially at rest and the side


14


is currently viewable, then to view the side


16


the display member


12


must be rotated about its axis. This is accomplished by activating the motor


22


, which drives the input shaft


32


in the suitable direction. Initially, the follower


56


and cam arm


58


are in their minimum rotational speed position (FIG.


5


). When the input shaft


32


is rotated, the follower arm


54


/follower


56


start driving the cam arm


58


, with the rotational speed gradually increasing as the follower


56


and cam arm


58


move away from the minimum speed position (FIG.


6


). Concurrently, the display member


12


starts to gradually rotate from its stopped position.




Continued rotation causes the follower


56


and cam arm


58


to reach their maximum speed position (FIG.


3


), at which point the display member


12


is being driven at its maximum speed and the side


16


is partially visible. As the follower


56


and cam arm


58


move from the maximum speed position, the speed of the display member


12


starts decreasing as the side


16


of the display member is starting to approach its fully viewed position (FIG.


4


). When the side


16


reaches its fully viewed position, the follower


56


and cam arm


58


will be back at their minimum speed position (FIG.


6


). To stop the display member


12


in position, one need only to deactivate the motor


22


at the minimum speed position.




Ideally, for a three-sided (prismatic) display member


12


, the output gear


38


and the large diameter drive gear


42


are sized to provide a 3:1 reduction ratio, such that a complete cyclic speed variation provided by the motion transmitting device


34


occurs for every 120° rotation of the display member


12


. This ensures that the display member


12


goes through the cycle of gradual speed increase, maximum speed, and gradual speed decrease to minimum speed each time a new side is to be viewed. For a two sided display member a 2:1 reduction ratio would be provided.




While the invention has been described herein as driving a display member, the invention could also be used to drive any member requiring frequent starts and stops, such as conveyors with containers thereon which stop and start at fill stations to fill the containers. The gradual increase and decrease of speed provided by the motion transmitting device described herein would prevent the containers on the conveyor from tipping over, with the maximum speed between starting and stopping maintaining efficient operation of the conveyor.




The above specification provides a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.



Claims
  • 1. A convertible sign mechanism comprising:a convertible sign member being rotatable about an axis; drive means connected to said convertible sign member for rotating said convertible sign member at a variable velocity, said drive means operating continuously throughout the rotation of said convertible sign member, said drive means including: a motor; a drive shaft operatively connected to said motor; a cam follower operatively connected to said drive shaft; a member configured to receive said cam follower in a slidable engagement; an output gear operatively connected to said member; and a drive gear operatively connected with said output gear and said convertible sign member; said output gear and said drive gear providing a reduction ratio of at least 2:1.
  • 2. The convertible sign mechanism of claim 1, wherein said reduction ratio is 3:1.
  • 3. The convertible sign mechanism of claim 2, further comprising a prismatic display arrangement.
  • 4. The convertible sign mechanism of claim 1, member configured to receive said cam follower includes a slotted cam arm.
  • 5. A convertible sign mechanism having drive means for rotating a structure in a continuous manner at a variable velocity, said drive means comprising:a motor; a drive shaft operatively connected to said motor; a cam follower operatively connected to said drive shaft; a member configured to receive said cam follower in a slidable engagement; an output gear operatively connected to said member; a drive gear operatively connected to said output gear and effective for being operatively connected to a structure to be rotated: and said output gear and said drive gear providing a reduction ratio of at least 2:1.
  • 6. The convertible sign mechanism of claim 5, wherein said reduction ratio is 3:1.
  • 7. The convertible sign mechanism of claim 5, wherein said member configured to receive said cam follower includes a slotted cam arm.
US Referenced Citations (14)
Number Name Date Kind
1721597 Jones Jul 1929 A
3202262 Jones, Jr. Aug 1965 A
3234674 Simoneau Feb 1966 A
3295381 Czarnecki Jan 1967 A
3304638 Grandell et al. Feb 1967 A
3826027 Abbema Jul 1974 A
3859743 Schoenung Jan 1975 A
3918183 Poulos Nov 1975 A
4015349 Dunne Apr 1977 A
4048868 Lock Sep 1977 A
4075896 Pessina et al. Feb 1978 A
4189859 Ahlgren Feb 1980 A
5343645 Huber Sep 1994 A
5692330 Anderson, Jr. Dec 1997 A