The present invention relates in general to the sizing of pistols relative to the ammunition to be fired and the fit and feel of the pistol for the shooter (i.e., end user). More specifically, the present invention relates to the resizing of the platform for a .45 ACP pistol, such as a Model 1911 pistol, to accept shorter ammunition, such as 9 mm, .357 Sig, 40 S & W, and the newer .45 GAP (Glock® Automatic Pistol) cartridge, to name a few. As described in the published article entitled “Shrinking The GAP” found in the May 2005 issue of American Rifleman, Glock developed the .45 GAP cartridge with the intent to create a pistol the size of a high-capacity 9 mm or .40 S & W with the performance of a .45 ACP. The .45 GAP cartridge is a rimless round that propels .45-cal. bullets ranging in weight from 185 to 230 grams. Those bullets are driven at the same velocities as the .45 ACP rounds.
The present invention is directed to resizing (conversion) of the platform for a .45 ACP pistol, such as an M-1911 platform. The objective is to convert the .45 ACP platform such that it is designed specifically for the smaller (shorter) “family” of ammunition that includes, as some of the possibilities, 9 mm, .357 Sig, .40 S & W, and .45 GAP cartridges, with consideration given to the needs of the shooter. Due to the attention being given to the newer .45 GAP cartridge, that style of ammo is selected for the description of the preferred embodiment of this invention. The M-1911 pistol is selected as the style of .45 ACP pistol to explain the present invention. However, the same types of design changes and modifications described for a current M-1911 pistol can be made, according to this invention, to other .45 ACP pistols. These design changes and modifications are also suitable for the other (shorter) cartridges that are defined herein as being a part of this shorter “family”. Considering the change in cartridge size (length) between a .45 ACP cartridge and these shorter cartridges, dimensional changes to the M-1911 pistol (or another .45 ACP pistol) have to be considered.
As the referenced magazine article describes, it would have been an option, in lieu of the present invention, to select a regular Model 1911-style pistol and use a blocked magazine to accommodate the shorter .45 GAP cartridge. However, this would have accomplished nothing in terms of overall pistol improvements for the shooters. Arguably, there is no reason for the .45 GAP cartridge to have been developed except to be able to provide .45 ACP performance in a small-frame pistol. The aforementioned article continues to explain that many shooters do not have hands big enough to handle double-wide magazine .45 pistols, and a lesser number cannot easily manage a single-column pistol in the classic M-1911 configuration. A pistol “properly” scaled for the .45 GAP cartridge length puts .45 power in the hands of shooters who otherwise might not have it. Similar sizing benefits are provided for the other ammo in this shorter cartridge family, according to the present invention.
The challenge is how to properly scale (downsize) a current or classic .45 ACP pistol, such as the referenced M-1911 pistol. Questions such as what dimensions should be reduced and how much of a size reduction is appropriate need to be considered. These questions and the related design challenges are addressed by the present invention. Once the appropriate size reductions for the .45 GAP cartridge, and for other cartridges that would be part of this (shorter) family, are determined, the next question is what dimension should be used and where in the component parts of the M-1911 pistol should the dimensional reductions occur. A further consideration, and something addressed by the present invention, is whether certain design efficiencies can result from the downsizing. One example of a contemplated design efficiency is whether a single receiver can be designed in a manner that would accept a plurality of different cartridge sizes, even if other parts, such as the barrel, have to be uniquely sized to the specific (single) cartridge.
The present invention addresses these issues and questions in a novel and unobvious manner. The resultant pistol, according to the present invention, is smaller and fits the hand of the shooter a little better. The size reduction involves a dimensional downsizing of approximately one-eighth of an inch. Everything normally found on the rear of the pistol is moved approximately one-eighth of an inch forward. This affects the main spring housing, grip, safety, and hammer. In effect, the differences in overall length between the .45 ACP cartridge and the shorter cartridges are calculated and a compromise dimension is selected, roughly midway between the range of cartridge length differences for the family of cartridges to be covered. The frame, slide, and magazine are shortened by approximately that compromise dimensional amount, approximately one-eighth of an inch. The magazine well has a fore and aft dimension that becomes shorter by about the same measurement in order to accept the different (smaller) magazine that takes the shorter cartridges, including the .45 GAP cartridge.
The aforementioned article describes the pistol embodiment disclosed herein as being similar to taking a slice down through a .45 ACP pistol and then putting the two pieces back together. One key though is where to take out the material and how to gain other benefits or improvements in the process of downsizing or scaling down the former M-1911 pistol for shorter cartridges, such as the .45 GAP cartridge. The present invention includes a unique and unobvious material removal decision that results in an improvement in terms of overall pistol performance. In terms of describing the present invention, the references to a “shorter” cartridge are intended to cover any cartridge that is shorter in length than the .45 ACP cartridge that is the designated cartridge for the .45 ACP pistol, such as the predecessor M-1911 pistol. Some of the “shorter” cartridges that satisfy this definition include 9 mm, 0.357 Sig, .40 S & W, and .45 GAP. This listing of shorter cartridges is not intended to preclude the applicability of the present invention to any cartridge whose length is less than a .45 ACP cartridge. Another aspect of the present invention is whether a compromise dimension is available that would downsize the M-1911 in a way that would permit the same receiver to handle different magazines for different cartridges in this “shorter” family. A still further aspect of the present invention is where or how to take up the dimensional reduction in the spacing between the fore and aft walls of the magazine well. Ideally, as the distance of separation between the walls of the magazine well is reduced, any dimensional changes to other parts should be made in a manner that will affect the fewest number of other parts.
A method of modifying a .45 ACP pistol for accepting a shorter cartridge according to one embodiment of the present invention comprises a material removal decision for the slice that is taken out behind the breech face. Considering an M-1911 pistol as one example of the type of .45 ACP pistol covered by the present invention, its construction includes a slide and a receiver that defines a magazine well, the slide is configured with a breech face and a proximal end. The magazine well includes a front wall and spaced therefrom a rear wall. One of the method steps involves reducing the distance of separation between the front wall and the rear wall of the magazine well. A second step to this method involves reducing the distance between the breech face and the proximal end of the slide by an amount that is approximately the same as the reduction between the front wall and rear wall of the magazine well.
One object of the present invention is to provide an improved method of downsizing a .45 ACP pistol in order for it to accept shorter cartridges.
Related objects and advantages of the present invention will be apparent from the following description.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
The present invention is directed to dimensionally changing a .45 ACP platform or pistol so that it is downsized and capable of accepting one of the family of shorter cartridges that includes the .45 GAP, 9 mm, .367 Sig, and .40 S & W. While these are the most likely shorter cartridges to be used at the present time in the modified or converted .45 ACP platform, any cartridge that is shorter than the .45 ACP cartridge is a possible candidate for the present invention.
In order to describe this invention in more specific terms, an M-1911 pistol has been selected. In terms of a specific cartridge for describing the present invention, a .45 GAP has been selected and is the focus of the preferred embodiment. Even though an M-1911 pistol has been selected, the invention is more broadly applicable to any .45 ACP platform. Likewise, while the dimensional downsizing is discussed in terms of the .45 GAP cartridge, and in terms of the other three cartridges within the referenced “family”, any cartridge of the described shorter construction is likely suitable for use in the modified pistol, consistent with the downsizing according to the present invention.
The family of shorter cartridges is a consideration as part of the present invention in view of the fact that each one of the four cartridge types listed have a length dimension that is shorter than the length dimension of a .45 ACP cartridge. These shorter length dimensions relative to the .45 ACP cartridge range from being approximately 0.106 inches shorter to being approximately 0.140 inches shorter. Although the corresponding magazines would in all likelihood be sized specifically to the precise cartridge length, the magazine well defined by the receiver or frame incorporates a modest clearance between the exterior surface of the magazine and the front and rear walls of the magazine well. By selecting a mid-range dimensional value between the extremes of 0.106 and 0.140, it is possible, according to the present invention, to define a “universal” magazine well that is suitable for receiving each of the four different magazines that would be sized for each of the four cartridges within the referenced family. Simply taking a mid-point value between the extremes yields a mid-range value for the dimensional modification of approximately one-eighth of an inch, specifically, 0.123 inches. By using this mid-range value for the size reduction to the magazine well, as described herein, the same frame or receiver is able to be used for any of the four shorter cartridges, as described above. Further, it is believed that the same frame or receiver is able to be used, according to the present invention, for any “shorter” cartridge whose length difference, compared to the length of a .45 ACP cartridge, falls within the range of between 0.106 inches shorter and 0.140 inches shorter.
Referring to
The
In the 1990's, some of the pistols that would accept the .45 ACP cartridge were rather large pistols and, as a result, less concealable and not as user friendly, especially to those shooters with average or smaller hands. During the late 1990's and early 2000's, new pistol designs and redesigns continued to evolve in an on-going effort to appeal to a wide range of shooters with different preferences.
During this same time period of design evolution, Glock introduced the .45 GAP cartridge which was designed as a slightly shorter cartridge compared to its predecessor, the .45 ACP cartridge. It was felt that the .45 GAP cartridge would offer better functional reliability than the .45 ACP cartridge and yet duplicate its performance. The specifics of the .45 GAP cartridge in terms of size, shape, construction, and bullet weight are believed to be well known and appear to be well documented in the available literature.
The present invention is directed to taking advantage of the slightly shorter .45 GAP cartridge as compared to the .45 ACP cartridge in pursuit of a pistol that is more suitable or user friendly for shooters with average to smaller hands without sacrificing .45 power. In pursuit of a properly scaled pistol for the .45 GAP cartridge, other improvements were pursued and are described herein. The present invention is constructed and arranged to enable the modified (downsized).45 ACP platform to accept other cartridges that are shorter than the .45 ACP cartridge.
Referring to
The initial grouping or family of shorter cartridges that were considered for the present invention include the .45 GAP, 9 mm, .357 Sig, and .40 S & W. While other cartridges may be part of this family, the key is whether the length difference relative to a .45 ACP cartridge falls within the determined range. Considering the nominal lengths of these four cartridges relative to the nominal length of a .45 ACP cartridge, the length differences range from 0.106 inches to 0.140 inches. These specific cartridges have the following listed nominal lengths, resulting in this length difference range.
For the present invention, it was envisioned that a mid-range value of 0.123 inches, approximately one-eighth of an inch, for the size reduction for the pistol would result in a downsized magazine well 34 that would still accept a properly-sized magazine for each of these different cartridges, without having to change the receiver or frame. In terms of moving the front wall 34a and/or the rear wall 34b of the defined magazine well 34 in order to make the 0.123 inch reduction in the distance between these walls, the intent was to move the walls in a manner that would minimize the need to change other component parts of the pistol.
Due to the angle of incline of the front wall 33 and rear wall 32 of the magazine 23a, any measurement of the “distance” of separation of these two walls must be qualified. There is a measurement that can be taken normal to the wall surfaces. There is another, longer measurement that is taken on a horizontal plane, based upon the orientation of the pistol 20 in
The design modification to the original (full-size) magazine in order to create the downsized magazine 23a can best be described as taking a length-wise slice of material out of the magazine and pushing the magazine rear wall 32 towards the magazine front wall 33. The “slice” of material in front-to-rear width depends on the cartridge length difference between the selected cartridge and a .45 ACP cartridge. For the magazine well, a mid-range slice dimension of approximately one-eighth inch (0.123 inches) is selected. Due to the cooperation and interdependence between the pistol component parts, other dimensional adjustments or modifications have to be made. In effect, the main spring housing 37, grip safety 38, and hammer 39 are moved approximately one-eighth inch (0.123 inches) forward. Further, the extractor 40, firing pin 41, and firing pin spring 42 are shorter, as is the trigger 43. In terms of M-1911 operation, cartridge feeding takes place when a round or cartridge 46 in the magazine 23a is moved forward into the path of the slide 21a by the magazine follower 48 and magazine spring 49. As this occurs, there is a cartridge ramping action that occurs as the slide 21a moves forward and begins to strip and thereby feed a round 46 forward from the magazine 23a. Chambering occurs when a new round 46 is fed from the magazine 23a and placed in the chamber 50. This action occurs as the slide 21a moves forward under compressed recoil spring pressure. A cartridge 46 is stripped from the magazine and pushed up the frame/barrel ramp and into chamber 50.
Fired cartridge case 51 extraction occurs during rearward movement of the slide 21a and as the breech 54 begins to open as the barrel links down (see
Cocking occurs as the hammer 39 is positioned to fire the next round by the continuing rearward movement of the slide 21a. The slide 21a rotates the hammer 39 back and the hammer strut 57 downward. This compresses the hammer spring and enables the sear, under sear spring pressure, to engage the hammer's full cock notch. Further rearward slide movement fully compresses the recoil spring 60 for the next firing cycle (see
As would be understood, the speed and close dimensions of this sequence of cooperative steps requires a great deal of precision. Not only must the critical dimensions be very accurate, but the assembly and positioning of the component parts must be precise. One of the more critical areas involves the cooperative positioning of the breech face 55 relative to the ejection port 56 relative to the upper, open end 64 of the magazine 23a. There is very little margin for error or misalignment in these component parts in the prior art M-1911 pistol and the speed of ejection could result in the pistol jamming during the ejecting and chambering sequence or cycle. The most critical aspect relating to a possible jam of the M-1911 pistol seems to be slide travel to the rear and the positioning of the breech face 55 relative to the other cooperating parts participating in the various stages or steps of the ejecting and chambering process.
Considering the possibility for a jam with the prior art M-1911 pistol 20, and considering the dimensional downsizing or scaling down in order for the modified M-1911 pistol 20a to accommodate the .45 GAP cartridge, the present invention conceived of a way to accommodate the removal of material (approximately one-eighth inch shorter) in the slide 21a and provide an improvement relative to the likelihood of a jam. By reducing the risk or probability for a jam, the end result pistol 20a is more reliable. By removing the slice of material out of slide 21a at a location between the breech face 55 and the rear or proximal end 65 of slide 21a, the breech face 55 shifts farther to the rear, i.e., closer to the proximal end 65. This shift of the breech face 55 farther to the rear is an increase over what would otherwise occur if the material was removed from the slide at a different location.
In
The dimensional shift of the breech face 55a farther to the rear of the slide creates a larger clearance space or an increase in the edge-to-edge distance so that there is less risk that the slide might interfere with either the ejecting or chambering stages. This dimensional shift in breech face 55a position, the result of removing an approximate one-eighth inch (0.123 inches) of material from the slide, between the breech face 55a and the proximal end 65a of the slide, gives the overall sequencing a split second longer in order to eject the fired cartridge case and chamber the next round from the magazine. While the increase in dwell time is quite small in terms of the actual time, it is significant, considering the overall cycle time. This increase in dwell time provides enough added dwell time to maintain the requisite clearance opening a little longer in order to eject the spent casing and chamber the new round. All of this is achieved while retaining full travel of the slide.
A further feature of the design modifications made to the prior M-1911 pistol in order to create M-1911 pistol 20a pertains to the receiver or frame. The same receiver is suitable for use with other ammo. The applicable family of shorter cartridges includes any cartridge that is shorter in length than the .45 ACP cartridge, such as, for example, 9 mm, .357 Sig and .40 S & W cartridges in addition to a .45 GAP cartridge. While each cartridge would still require its own magazine, the magazine well does not change. Additionally, the dimensional modification to the slide according to the present invention that creates an added dwell time by shifting the breech face farther to the rear is compatible with these other shorter cartridges within this “family”. The corresponding slides can be modified in the same fashion.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
1401152 | Green | Dec 1921 | A |
1517483 | Young | Dec 1924 | A |
2543604 | Singer | Feb 1951 | A |
4539889 | Glock | Sep 1985 | A |
4651432 | Bornancini | Mar 1987 | A |
4825744 | Glock | May 1989 | A |
4893546 | Glock | Jan 1990 | A |
5195226 | Bornancini | Mar 1993 | A |
5228887 | Mayer | Jul 1993 | A |
5485695 | Glock | Jan 1996 | A |
5726377 | Harris et al. | Mar 1998 | A |
5808229 | Bastian et al. | Sep 1998 | A |
5827992 | Harris et al. | Oct 1998 | A |
5857279 | DeOliveira Masina | Jan 1999 | A |
5983773 | Dionne | Nov 1999 | A |
6212991 | Frazier, III | Apr 2001 | B1 |
6256915 | Da Silveira | Jul 2001 | B1 |
6442882 | Dionne | Sep 2002 | B1 |
6550174 | Jamison | Apr 2003 | B2 |
6557287 | Wollmann | May 2003 | B2 |
7055422 | Dindl et al. | Jun 2006 | B1 |
Number | Date | Country |
---|---|---|
WO 2004068061 | Aug 2004 | WO |