The present disclosure relates to a converter and a controlling method thereof. More particularly, the present disclosure relates to a converter including an active clamp switch and a secondary side rectifier for energy recovery from active clamp and a controlling method thereof.
A DC voltage is commonly required for operating an electric device. Therefore, an AC-DC power supply or a DC-DC power supply is needed for outputting a rectified DC voltage. A converter is commonly employed in such AC-DC (or DC-DC) power supply to convert a voltage. Many kinds of circuit topologies such as a forward topology, a flyback topology, a CUK topology, a full bridge topology, a half bridge topology and a push pull topology are used in the converter. Conventionally, a converter may include a primary side rectifier having a primary switch and a secondary side rectifier having a secondary side switch for modulating an outputted voltage.
In switch mode power supplies utilizing the aforementioned converters, a Zero Voltage Switching (ZVS) is desired for the primary switch; because of a relatively high voltage on the primary switch that induces a turn-on loss.
The conventional active clamp control has a key problem in a Discontinuous Current Mode (DCM), where the primary switch does not turn on after the transformer energy has been discharged to the output, thus the active clamp transistor is kept “ON” in the discontinued period (both the primary switch and the secondary side rectifier are “OFF”). With the active clamp transistor “ON”, the oscillation involves the snubber capacitor, which is many orders of magnitudes larger than the parasitic capacitance of the primary switch, thus the conduction loss of the active clamp switch makes the snubber once again loss process.
According to one aspect of the present disclosure, a controlling method of a converter including an active clamp switch and a secondary side rectifier is provided. The controlling method of the converter includes performing a state detecting step to detect an operation state of the secondary side rectifier and performing a switch controlling step to control the active clamp switch according to the operation state of the secondary side rectifier.
According to another aspect of the present disclosure, a controlling method of a converter including an active clamp switch and a secondary side rectifier is provided. The controlling method of the converter includes providing the active clamp switch in a primary side circuit; providing the secondary side rectifier in a secondary side circuit; performing a state detecting step to detect an operation state of the secondary side rectifier; and performing a switch controlling step to control the active clamp switch according to the operation state of the secondary side rectifier.
According to further another aspect of the present disclosure, a converter including an active clamp switch and a secondary side rectifier includes a primary side circuit and a secondary side circuit. The primary side circuit includes the active clamp switch. The secondary side circuit includes the secondary side rectifier having an operation state. The operation state of the secondary side rectifier of the secondary side circuit is detected to control the active clamp switch of the primary side circuit.
The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
The embodiment will be described with the drawings. For clarity, some practical details will be described below. However, it should be noted that the present disclosure should not be limited by the practical details, that is, in some embodiment, the practical details is unnecessary. In addition, for simplifying the drawings, some conventional structures and elements will be simply illustrated, and repeated elements may be represented by the same labels.
It will be understood that when an element (or device) is referred to as be “coupled to” another element, it can be directly coupled to the other element, or it can be indirectly coupled to the other element, that is, intervening elements may be present. In contrast, when an element is referred to as be “directly coupled to” another element, there are no intervening elements present. In addition, the terms first, second, third, etc. are used herein to describe various elements or components, these elements or components should not be limited by these terms. Consequently, a first element or component discussed below could be termed a second element or component.
The primary side circuit 300 includes an active clamp switch 310, a primary capacitor 320, a primary switch 330 and a primary winding 340. The active clamp switch 310 may be an NMOS transistor, but the present disclosure is not limited thereto. The primary capacitor 320 is coupled between an input power source and the active clamp switch 310. The input power source generates an input voltage Vin and may be a conventional AC source input including an AC power, a full bridge rectifier, etc. The primary switch 330 has a reflected voltage VD thereon. The primary switch 330 is coupled to the active clamp switch 310, the primary winding 340, a ground and the control unit 500. The primary switch 330 may be an NMOS transistor, but the present disclosure is not limited thereto. The primary winding 340 has two winding ends. One of the two winding ends of the primary winding 340 is coupled to the input power source and the primary capacitor 320. Another of the two winding ends of the primary winding 340 is coupled to the active clamp switch 310 and the primary switch 330.
The secondary side circuit 400 includes a secondary side rectifier 410, a secondary winding 420 and a secondary capacitor 430. The secondary side rectifier 410 having an operation state. The operation state includes a conducting state, a blocking state and a transition state. The conducting state represents that the secondary side rectifier is turned on. The blocking state represents that the secondary side rectifier is turned off. The transition state represents that the secondary side rectifier transits from the conducting state to the blocking state. The secondary side rectifier 410 may be a diode or the NMOS transistor, but the present disclosure is not limited thereto. The secondary winding 420 is coupled to the secondary side rectifier 410. The secondary winding 420 and the primary winding 340 are configured to form an energy transformer to transfer energy from the primary side circuit 300 to the secondary side circuit 400. The secondary capacitor 430 is coupled to the secondary side rectifier 410 and the secondary winding 420. The secondary capacitor 430 generates an output voltage Vout.
The control unit 500 is coupled between the active clamp switch 310 and the secondary side rectifier 410. In other words, the control unit 500 is coupled between the primary side circuit 300 and the secondary side circuit 400. The control unit 500 is configured to implement the controlling method 100 of
The side circuit providing step S12 is performed to provide the active clamp switch 310 and the secondary side rectifier 410 in the primary side circuit 300 and the secondary side circuit 400, respectively. In addition, the side circuit providing step S12 includes performing an energy transformer providing step S122 and a primary switch providing step S124. The energy transformer providing step S122 is performed to provide an energy transformer coupled between the active clamp switch 310 and the secondary side rectifier 410 to transfer energy. The primary switch providing step S124 is performed to provide a primary switch 330 coupled to the active clamp switch 310 and the energy transformer.
The state detecting step S14 is performed to detect an operation state of the secondary side rectifier 410. The state detecting step S14 includes performing a detector providing step S142 to provide a detector 510 coupled between the active clamp switch 310 and the secondary side rectifier 410 to detect the secondary side rectifier 410 so as to generate the operation state of the secondary side rectifier 410.
The state judging step S16 is performed to judge whether the operation state of the secondary side rectifier 410 is a conducting state, a blocking state or a transition state.
The switch controlling step S18 is performed to control the active clamp switch 310 according to the operation state of the secondary side rectifier 410. In response to determining that the operation state of the secondary side rectifier 410 is the conducting state in the state judging step S16, the active clamp switch 310 is turned on by the control unit 500 in the switch controlling step S18. In response to determining that the operation state of the secondary side rectifier 410 is the blocking state, the active clamp switch 310 is turned off by the control unit 500 in the switch controlling step S18. In response to determining that the operation state of the secondary side rectifier 410 is the transition state, the active clamp switch 310 is turned on and then turned off to excite a primary side oscillation for primary switch operation. In addition, the switch controlling step S18 includes performing a state transformer providing step S182 and a controller providing step S184. The state transformer providing step S182 is performed to provide a state transformer 520 coupled between the active clamp switch 310 and the detector 510 to control the active clamp switch 310 according to the operation state of the secondary side rectifier 410. The controller providing step S184 is performed to provide a controller 530 coupled between the state transformer 520 and the primary switch 330 to control the primary switch 330 according to the operation state of the secondary side rectifier 410.
Therefore, the controlling method 100a of the converter 200a utilizes the operation state of the secondary side rectifier 410 to control the active clamp switch 310 instead of shifting the turn-on time of the active clamp switch 310 according to the timing of the primary switch 330, so that energy efficiency can be improved.
In
The control unit 500a includes a detector 510, a state transformer 520, a controller 530, a first resistor R1, a second resistor R2, a third resistor R3, a diode D1, a first capacitor C1 and a control winding L1. The detector 510 is coupled between the active clamp switch 310 and the secondary side rectifier 410 to detect the secondary side rectifier 410 so as to generate the operation state of the secondary side rectifier 410. In detail, the detector 510 includes a first detecting switch 512, a second detecting switch 514, a second capacitor C2 and a fourth resistor R4. The first detecting switch 512 is coupled to the secondary side rectifier 410, the second detecting switch 514, the second capacitor C2 and the state transformer 520. The second detecting switch 514 is coupled to the first detecting switch 512, the second capacitor C2, the state transformer 520 and the fourth resistor R4. The second capacitor C2 is coupled to the first detecting switch 512, the second detecting switch 514 and the state transformer 520. The fourth resistor R4 is coupled to the second detecting switch 514, the state transformer 520 and the secondary side rectifier 410. Moreover, the state transformer 520 is coupled between the active clamp switch 310 and the detector 510 to control the active clamp switch 310 according to the operation state of the secondary side rectifier 410. In detail, the state transformer 520 includes a first winding 522, a second winding 524 and a third winding 526. The first winding 522 is coupled to the detector 510. The second winding 524 is coupled to the primary switch 330, the first resistor R1 and the diode D1. The third winding 526 is coupled to the controller 530. In addition, the controller 530 is coupled between the state transformer 520 and the primary switch 330 to control the primary switch 330 according to the operation state of the secondary side rectifier 410. The controller 530 is coupled to the third winding 526, the primary switch 330, the second resistor R2 and the third resistor R3. The first resistor R1 and the diode D1 are coupled between the active clamp switch 310 and the second winding 524. The first capacitor C1 is coupled to the first resistor R1, the diode D1 and the active clamp switch 310. The third resistor R3 is coupled between the second resistor R2 and the control winding L1. The control winding L1 is coupled to the energy transformer, i.e., the control winding L1 is coupled to the secondary winding 420.
Therefore, the converter 200a utilizes the operation state of the secondary side rectifier 410 of the secondary side circuit 400 to control the active clamp switch 310 of the primary side circuit 300a instead of shifting the turn-on time of the active clamp switch 310 according to the timing of the primary switch 330, so that energy efficiency can be improved.
In
In
In
In
According to the aforementioned embodiments and examples, the advantages of the present disclosure are described as follows.
1. The controlling method of the present disclosure utilizes the operation state of the secondary side rectifier to control the active clamp switch instead of shifting the turn-on time of the active clamp switch according to the timing of the primary switch, so that energy efficiency can be effectively improved.
2. The converter of the present disclosure utilizes the operation state of the secondary side rectifier to control the active clamp switch instead of shifting the turn-on time of the active clamp switch according to the timing of the primary switch, thereby effectively improving energy efficiency.
Although the present disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.