The invention relates generally to the field of electrical power converters and inverters. More particularly, the invention relates to techniques for preventing or forestalling failure of motor drive circuitry due to overheating.
Power inverters and converters typically employ power modules to create a desired output current waveform, which is used to power various devices, such as motors and other equipment. The frequency and amplitude of the output current waveform may affect the operation of the device such as by changing the speed or torque of a motor, for example. Some power modules create the desired output current waveform through pulse width modulation, wherein power semiconductor switches such as insulated gate bipolar transistors (IGBTs) are caused to switch rapidly on and off in a particular sequence so as to create an approximately sinusoidal output current waveform. Furthermore, high transistor switching speeds tend to produce a smoother, more ideal sinusoidal waveform, which may be desirable in some applications. For example, in heating, ventilating, and air conditioning systems a smoother sinusoidal waveform will reduce system noise and vibrations.
Higher transistor switching speeds may tend, however, to increase the junction temperature of the transistors, which may result in more mechanical stress and increased rates of transistor failure over time. Attempts have been made to reduce transistor failure by limiting the maximum absolute transistor junction temperatures. However, these techniques have failed to account for the increased stresses that tend to occur under start-up conditions or low-speed conditions, wherein the transistors tend to experience high current at low output frequency. For example, a power converter used as a doubly fed induction generator converter may typically operate in a maximum power point tracking (MPPT) condition, at which the converters operate at a relatively low frequency and high output current. Such low frequency conditions may contribute to electrical failures of the converter.
It may be advantageous, therefore, to provide a system and method of reducing the thermal stresses due to a continuous MPPT operation mode of the converter. Specifically, it may be advantageous to provide a method of reducing temperature variations of the transistor junction, i.e. the semiconductor chip itself, and the case, i.e. the package in which the semiconductor chip is contained.
The present invention relates generally to a transistor protection mechanism configuration designed to address such needs. Embodiments include systems and methods of reducing the operating frequency of a converter to avoid high junction temperature variation and stress on the bond wires. Embodiments also include methods of estimating the expected junction temperature variation and other associated parameters, such as number of cycles to failure and aging per second of the converter.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Embodiments of the present invention relate to reducing the mechanical stress on solid state switching devices, such as IGBTs due to large temperature variations of the junction. Large junction temperature variations may contribute to particularly high levels of mechanical stress, because the different expansion rates of the various materials inside the transistor package may lead to wire crack growth in wire bonds and similar contacts. Therefore, reducing junction temperature variations may result in a longer lasting converter module. In embodiments of the present invention, adverse affects of junction temperature variation is reduced by controlling the operating frequency of the converter module. Because the highest junction temperature variations tend to occur during operating conditions (e.g., start-up or low-frequency, high-current conditions), an aging parameter of the converter may be monitored, and the operating frequency may be increased when the aging parameter exceeds a certain threshold. In some embodiments, increasing frequency to reduce or prevent unacceptable aging may result in operating the converter below an MPPT operational mode, such that the converter outputs less than a maximum level of power. Thus, in embodiments may include optimizing a converter performance with respect to both converter lifespan and power output.
Turning to the figures,
Referring again to the example provided in
The generator 18 may convert the mechanical power into electrical power, and may be, for example, an induction generator or a synchronous generator. For example, the generator 18 illustrated in
The system 10 may include a converter and inverter module including a three-phase AC-DC converter 24 and a three-phase DC-AC inverter 26. The converter 24 and inverter 26 may be linked by a DC capacitor battery 32. The converter 24 may be connected to the rotor winding 20 of the generator 18, and may also be referred to as the rotor side converter 24. The inverter 26 may be connected to the grid 30 by the transformer 28, and may also be referred to as the grid side inverter 26. The bidirectional converter and inverter 24 and 26 may enable vector control of the active and reactive powers delivered to the grid 30 and may also increase power quality and angular stability and decrease the harmonic content introduced into the grid 30 (e.g., via filters).
The converter 24 and inverter 26 may be used for varying levels of power control, and may sometimes output relatively high power (voltage and current). The converter 24 and inverter 26 may include transistors and antiparallel diodes for switching and converting such voltages. In some embodiments, the system 10 may include one or more processors 34 for controlling an operation of the inverter 26. For example, and as will be discussed, the processor 34 may change the switching frequency or output current of transistors in the inverter 26 to decrease power loss and junction temperature variations which may be affected by the operations of the transistors in the inverter. The processor 34 may further be suitable for executing algorithms and computing parameters associated with operations of the inverter.
One example of an inverter 26 in some embodiments is provided in
Accordingly, embodiments of the present invention include a method of estimating the peak junction temperature in an inverter module. In some embodiments, the estimated peak junction temperature may be based on the estimated power losses of the IGBTs 40. Furthermore, the estimated power losses of the IGBT 40 may be based on estimated operating conditions of the IGBTs 40. For example, peak IGBT 40 junction temperature estimates may be based on approximated conduction losses and switching losses as calculated according to the following equations:
where Pc is the estimated conduction power loss as a function of the fundamental frequency, f, and the output RMS current of the drive, IRMS, Ps is the estimated switching power losses as a function of the switching frequency, fs, and the output RMS current of the drive, IRMS, and PI(f, fs, IRMS) equals the total estimated power losses of the IGBT 40. In equation (1), M(f) represents the modulation index and PF represents the power factor of a load driven by the inverter 26. In equation (1), Vt represents the approximate IGBT 40 conduction voltage at small or near zero forward current and Rt represents the approximate slope resistance. Both Vt and Rt may be derived from a manufacturer datasheet for the transistor (e.g., IGBT 40) used in the inverter 26. In equation (2), Eonoff represents the total energy required to switch the IGBT 40 on and off at a rated voltage Vnom (half of the IGBT rated voltage) and current Inom (rated IGBT module current) of the IGBT 40. All three of Eonoff, Vnom, and Inom may be obtained from manufacturer data sheets. IRMS and VDC represent the estimated output current and bus voltage of the IGBT 40.
The total power loss P may affect the junction temperature variation (ΔTj), which decreases the lifespan of the inverter 26. In some embodiments, the calculation of the junction temperature variation, ΔTj, may be simplified by assuming that the temperature variation of the case is negligible. As such, a “boost factor” (BF(f)) may be first approximated according to the following equation:
where Ri and τi equal the thermal resistances and capacitances of the thermal network of the inverter 26, Rjc equals the overall thermal resistance between the junction and the case, and f represents the frequency of the converter. Furthermore, an interim value, BF_ΔTj, may be calculated from the boost factor, according to the following equations:
BF_ΔTj(f)=1.85·(BF(f)−1) if BF(f)<2 (5);
BF_ΔTj(f)=BF(f) if BF(f)≥2 (6).
Having obtained the estimated power losses and the boost factor, the estimated junction temperature variation, ΔTj, may then be approximated according to the following formula:
ΔTj(f,fs,Irms)=PI(f,fs,Irms)·BF_ΔTj(f)·Rjc (7),
where ΔTj represents the junction temperature variation after one output cycle of the inverter module. As represented by the above equation, the junction temperature variation ΔTj of the inverter module may be a function of the frequency f, switching frequency fs, or drive current IRMS. Thus, in some embodiments, operating the inverter at a lower switching frequency fs may result in a lower junction temperature variation ΔTj.
It will be appreciated that variations of the above formulas may be made while still falling within the scope of the present invention. Additionally, in some embodiments one or more of the variables, such as IRMS, Eonoff or VDC for example, may be measured. Alternatively, these variables may also be estimated based on average known operating conditions of typical inverter modules or a particular inverter module. Additionally, in some embodiments, the diode 42 junction temperature variation may be estimated rather than the IGBT 40 junction temperature variation.
The mean junction temperature Tm can be calculated using a negative temperature coefficient (NTC) sensor. Generally, the NTC temperature sensor is embedded inside or on a heatsink near the IGBT module. When the NTC temperature sensor is embedded near the IGBTs 40, the average junction temperature of the IGBTs 40 can be approximately by the following equations
where PI represents losses of the IGBTs 40 and Ri and Ci represents the thermal resistance an capacitance, respectively. Rii and Cii represent the thermal resistance and thermal capacitance, respectively, between IGBT case layer and the NTC sensor. Rdi and Cdi represent the thermal resistance and capacitance between diode and the NTC sensor. Tntc represents the temperature measured by the NTC sensor. The parameters Rii, Cii, Rdi and Cdi can be extracted parameters from the inverter 26.
In some embodiments, the number of cycles to failure (Nf) for the IGBT can be estimated using different algorithms. For instance, one example of how the number of cycles to failure is estimated is provided in U.S. Patent Application Number 20090276165 and summarized by the relationship below:
Nf(f)=Nf(Tm,ΔTj,f) (9),
where Tm is the average junction temperature. In some embodiments, the number of cycles to failure Nf of an IGBT 40 may be determined based on a look up table. In other embodiments, different methods may also be used to estimate the number of cycles to failure, and may be based on the parameters of the inverter and/or electronic system.
The number of cycles to failure Nf may be used to determine the aging of the inverter module. Aging refers to an estimated decrease in the amount of lifetime remaining for an inverter, and an aging_per_second parameter represents the lifetime decrease per second. For example, the aging speed of an inverter can be calculated by the following equation:
Aging_per_second=f/Nf(ΔTj, Tm, f) (10)
One or more embodiments include techniques for adjusting the frequency of an inverter or converter to possibly increase its lifespan and/or forestall its failure. For example, one technique may be represented by the flow chart of the process 50 in
However, operating a converter in MPPT mode may shortens the lifespan of the converter under certain operating conditions (e.g., when output frequency is low), as the low frequency of the converter may increase the junction temperature variation ΔTj (as represented by equations 4-7), which decreases the number of cycles to failure Nf (as represented by equation 9), thus increasing the aging_per_second parameter (as represented by equation 10) of the converter during the time the converter is operating in MPPT.
Therefore, to forestall converter failure and/or maintain a certain lifespan of the converter, the process 50 may involve changing a mode of operation of the converter to operate at a different (e.g., higher) frequency based on how the operational mode is affecting the converter's aging parameters. While power output may also decrease such that the converter is no longer operating at MPPT, the junction temperature variation ΔTj and the aging_per_second of the converter may also decrease, thus preserving the converter lifespan. Therefore, in present embodiments, the operation of a converter may be optimized between power output and converter lifespan preservation to optimize the overall cost efficiency of the converter.
To determine whether the estimated lifespan of the converter for an MPPT mode of operation is below a desired lifespan, the process 50 may calculate (block 54) the operating frequency f of the converter, the output current IRMS, and the voltage VRMS, based on the active and reactive power command of the converter. Further, the process 50 may calculate the average junction temperature Tj,avg and the junction temperature variation ΔTj, using algorithms such as those discussed above. Using the calculated parameters, the process 50 may determine (block 56) the number of cycles to failure Nf of the converter. This determination may be made by using various algorithms (e.g., equation 9), or based on a look up table. Further, the aging_per_second of the converter may be determined (block 58) based on the number of cycles to failure Nf of the converter (e.g., equation 10).
The process 50 may compare the aging_per_second of the converter for the MPPT operation mode with the inverse of the designed_life. The designed_life may be a preferred lifespan of the converter in seconds to be maintained, and comparing the aging_per_second of the converter with the inverse of the designed_life, measured in seconds, may determine whether an operational mode (e.g., MPPT) of the converter is aging the converter at a rate (e.g., aging_per_second) which would cause the converter to fail prior to the designed_life.
If the aging_per_second is less than the inverse of the designed_life (block 60) the converter may continue to operate (block 52) in MPPT mode. This condition may be represented by the relationship below:
If the aging_per_second is greater than the inverse of the designed_life (block 62), the MPPT operational mode of the converter may be causing the converter to age at a rate which will result in a shorter lifespan than the designed_life. If the process 50 determines this condition, which is represented by the relationship below,
the process 50 may increase (block 64) the frequency f of the converter to a higher frequency f1. As previously discussed, increasing the frequency of the converter may reduce the junction temperature variation ΔTj, and as a result, the aging_per_second of the converter. The higher frequency f1 may be a frequency at which the aging_per_second is equal to the inverse of the designed_life. In some embodiments, the adjustment of the frequency may also affect the operation of the DFIG 18. For example, the DFIG 18 may operate at variable speeds, and may be synchronous, super-synchronous, or sub-synchronous. When the DFIG 18 is operating at super-synchronous speeds (i.e., higher than synchronous speed with the converter 24), the speed of the DFIG 18 may be increased to power the rotor side converter 24 with the increased frequency f1. When the DFIG 18 is operating at sub-synchronous speeds (i.e., lower than synchronous speed with the converter 24), the speed of the DFIG 18 may be decreased to power the rotor side converter 24 at the increased frequency f1.
In some embodiments, the process 50 may be performed dynamically or performed at intervals. For example, the process 50 may be performed at set time intervals, or the process 50 may be performed whenever operating changes in the system 10 occur. By continuously applying the process 50, an operating frequency f may be selected to maintain a desired lifespan of the converter and/or to optimize the power output of the converter with the desired lifespan of the converter.
For example, the plot 66 of
In embodiments of maintaining the lifespan of a converter in a wind power system 10 (
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application is a divisional of U.S. patent application Ser. No. 12/818,895, entitled “Converter Lifetime Improvement Method for Doubly Fed Induction Generator”, filed Jun. 18, 2010, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
7023172 | Katou | Apr 2006 | B2 |
7904254 | Ibori et al. | Mar 2011 | B2 |
8035240 | Erdman et al. | Oct 2011 | B2 |
8159178 | Serban | Apr 2012 | B2 |
8736091 | Wei | May 2014 | B2 |
20030214821 | Giannopoulos et al. | Nov 2003 | A1 |
20050043910 | Knebel et al. | Feb 2005 | A1 |
20050071090 | Katou | Mar 2005 | A1 |
20090276165 | Weiss et al. | Nov 2009 | A1 |
20110101689 | Larsen et al. | May 2011 | A1 |
20110101990 | Noorlag et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
20070140466 | Dec 2007 | WO |
Entry |
---|
Extended EP Search Report for EP Application No. 11170547 dated Nov. 16, 2016; 15 Pages. |
Number | Date | Country | |
---|---|---|---|
20140253055 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12818895 | Jun 2010 | US |
Child | 14285497 | US |