Convertible aircraft provided with two tilt fans on either side of the fuselage, and with a non-tilting fan inserted in the fuselage

Information

  • Patent Grant
  • 7188802
  • Patent Number
    7,188,802
  • Date Filed
    Tuesday, December 21, 2004
    20 years ago
  • Date Issued
    Tuesday, March 13, 2007
    17 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Luu; Teri Pham
    • Holzen; Stephen A
    Agents
    • Young & Thompson
Abstract
The present invention relates to a convertible aircraft provided with first and second tilt fans disposed on either side of the fuselage a little forward of the center of gravity of the convertible aircraft. In addition, the convertible aircraft includes, in remarkable manner, a non-tilting fan that is permanently in a vertical position and that is contained inside the fuselage.
Description

The present invention relates to a convertible aircraft provided with tilting ducted rotors, commonly referred to as “tilt fans”, the aircraft being capable of taking off and landing over very short distances, or even vertically.


BACKGROUND OF THE INVENTION

Numerous configurations have been attempted in the history of aviation to enable aircraft to take off and land vertically.


The helicopter configuration enables stationary flight to be performed under satisfactory control, but that is to the detriment of cruising speed. Research has thus been undertaken to improve hovering control of airplanes. Nevertheless, the solutions that have been found so far have been of moderate efficiency and have required complex modifications either to propulsion systems or to engines.


Document U.S. Pat. No. 5,054,716 discloses a convertible aircraft where each of the rotors together with its control and engine means constitutes a tilting assembly referred to as a “tilt rotor”. In that configuration, each engine must be capable of operating both in a substantially horizontal position and also in a vertical position, and that raises numerous problems associated either with the engine or with the cabling or the hydraulic and fuel ducts that need to pass through a tilting pivot. Furthermore, since the engines are generally turboengines, the gas jets from their nozzles have the drawback in helicopter mode of damaging the surface of take-off and landing areas.


Document U.S. Pat. No. 3,360,217 discloses a convertible aircraft having four tilt fans. In that configuration, the engines are disposed on the fuselage and remain in the same orientation regardless of the stage of flight. Passing from forward flight referred to as “airplane” mode to a helicopter mode is done by tilting the tilt fans only. Consequently, that makes it possible to avoid all problems associated with tilting an engine while it is running.


However, using four tilt fans is particularly penalizing insofar as the aircraft must have sufficient engine power to be capable of driving all four tilt fans. In addition, it goes without saying that the weight of the device is considerable, thereby correspondingly reducing the payload of the aircraft.


From those considerations, firstly it can be seen that the tilt rotor configuration is particularly difficult to implement and make suitable for industrial manufacture, because of the difficulties associated with tilting an engine. Secondly, it can be seen that the tilt fan configuration is easier to implement and does not present the above-described drawbacks, but that using four tilt fans increases the weight of the airplane in penalizing manner.


OBJECTS AND SUMMARY OF THE INVENTION

An object of the present invention is to provide a convertible aircraft enabling the above-mentioned limitations to be overcome.


According to the invention, a convertible aircraft provided with first and second tilt fans disposed on either side of the fuselage a little forward of the center of gravity of the aircraft, includes in remarkable manner a non-tilting fan, permanently in a vertical position and inserted in the fuselage.


In order to maintain equilibrium while hovering, three fans are quite sufficient to provide a support polygon. The weight saved by omitting a fourth fan enables the payload of the aircraft to be increased considerably.


In addition, the convertible aircraft advantageously includes two “canard” wings so as to be properly balanced.


In addition, two engines inserted in the fuselage drive the non-tilting fan as well as the first and second tilt fans, advantageously via a single main gearbox. The exhaust gases from the engines are mixed in a duct with cold air coming from the non-tilting fan, thereby creating a diluted flow of air. This diluted flow of air is expelled from the convertible aircraft via a two-directional jet deflector.


In a first embodiment, the convertible aircraft of the invention has two main wings that are sweptback, and that are disposed on either side of the fuselage in the high position. It is explained below that each of these main wings is advantageously provided with double-slotted high-lift flaps and also with a winglet including a single -flap. In this embodiment, the engines are inserted behind the cabin, and they are fed with air via two air inlets arranged on the sides of the fuselage.


In a second embodiment, the convertible aircraft has two main wings that are swept forward, and that are disposed on either side of the fuselage in the high position. Each of these wings is advantageously provided with double-slotted high-lift flaps. In addition, a tail fin and tail stabilizers enable the attitude of the aircraft to be controlled accurately. In addition, in this particular embodiment, the engines are arranged in the fuselage above the cabin, and they are fed with air via two distinct air inlets arranged in the top of the fuselage.


Finally, the non-tilting fan inserted in the fuselage draws in air coming from the air inlets of the engines. Under such conditions, there is no need to add an additional orifice in the fuselage in order to feed air to the non-tilting fan.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention and its advantages appear in greater detail in the following description of embodiments given by way of illustration with reference to the accompanying figures, in which:



FIG. 1 is a diagrammatic plan view of a convertible aircraft in a first embodiment;



FIG. 2 is a diagrammatic view of a convertible aircraft in a second embodiment;



FIG. 3 is a side view of a convertible aircraft of the first embodiment having its tilt fans in the vertical position;



FIG. 4 is a side view of a convertible aircraft of the second embodiment having its tilt fans in the vertical position;



FIG. 5 is a side view of a convertible aircraft in the first embodiment having is tilt fans in the horizontal position; and



FIG. 6 is a side view of a convertible aircraft in the second embodiment having its tilt fans in the horizontal position.





MORE DETAILED DESCRIPTION

Elements that are present in more than one figure are given the same reference in all of them.



FIG. 1 shows a convertible aircraft AC′ constituting a first embodiment. This convertible aircraft AC′ has two engines 4, 5 inserted inside a fuselage F′, the engines being provided with respective drive shafts 10, 11. Two air inlets 14′ and 15′ are arranged in respective sides 20 and 30 of the fuselage F′ to feed air to the engines 4 and 5. The exhaust gases from the engines 4 and 5 are exhausted into a duct 6 of the fuselage F′.



FIG. 2 shows a convertible aircraft AC constituting a second embodiment. This convertible aircraft AC has two engines 4, 5 inserted inside a fuselage F, the engines being provided with respective drive shafts 10, 11. Two air inlets 14 and 15 formed in the top of the fuselage feed the engines 4 and 5 with air. The exhaust gases from these engines 4, 5 are exhausted into a duct 6 of the fuselage F.


In addition, having two engines for such convertible aircraft AC, AC′ presents the advantage of providing a high degree of safety, insofar as failure of a single engine will not significantly affect operation of the aircraft AC, AC′.


With reference to FIGS. 1 and 2, the drive shafts 10, 11 serve to rotate a single interconnection shaft 9 via two distinct gear sets.


A main gearbox 12 arranged on the interconnection shaft 9 acts, via a secondary transmission shaft 13, to transfer the power from the two engines 4, 5 to a non-tilting fan 3 fixed in a vertical position and inserted inside the fuselage. In the same manner, this main gearbox 12 also drives the blades of first and second tilt fans 1 and 2 via a main transmission shaft 7. Thus, a single main gearbox 12 enables the blades of the non-tilting fan 3 and also of the first and second tilt fans 1 and 2 to be rotated, thereby considerably simplifying the architecture of the aircraft AC, AC′.


The non-tilting fan 3 takes in fresh air coming from the air inlet 14, 14′, 15, 15′ and exhausts it into the duct 6. Consequently, the exhaust gases coming from the two engines 4, 5 are diluted with fresh air in said duct 6. This dilution eliminates the infrared signature of the aircraft AC, AC′ almost completely.


The diluted air flow resulting from the flow of air delivered by the non-tilting fan 3 together with the exhaust gases from the engines 4, 5 is ejected from the convertible aircraft AC, AC′ via a two-directional jet deflector 8. When directed rearwards in airplane mode by the deflector 8, this diluted flow of air contributes to propelling the aircraft AC, AC′. In helicopter mode, the jet deflector 8 directs the flow downwards so as to provide balance and longitudinal control for the aircraft AC, AC′.


Furthermore, the first and second tilt fans 1 and 2 are disposed on either side of the fuselage F, F′ a little forward of the center of gravity of the convertible aircraft AC, AC′. These two tilt fans 1, 2 are capable of tilting about the main transmission shaft 7.


The location of the first and second tilt fans 1, 2 on the fuselage F, F′ corresponds substantially to the location where the main wing roots are positioned on a conventional airplane of non-convertible type.


Consequently, the tilt fan configuration requires the main wings A1, A2, A1′, A2′ to be positioned on the rear portion of the fuselage F, F′. The aircraft AC, AC′ therefore cannot be properly controlled in pitch unless it possesses airfoil surfaces at the forward end of the fuselage, referred to as “canard” wings C1, C2, C1′, C2′. The “canard” configuration is consequently a direct consequence of the tilt fan configuration.


In addition, the trailing edges of the main wings A1, A2, A1′, A2′ are provided with respective high-lift flaps VF1, VF2, VF1′, VF2′ having two slots, or the like.


With reference to FIGS. 3 and 4, in airplane mode, the first and second tilt fans 1 and 2 are in the vertical position. They thus act like propellers, thereby propelling the aircraft AC, AC′ in combination with the diluted air flow ejected rearwards by the jet deflector 8.


With reference to FIGS. 5 and 6, in helicopter mode, the first and second tilt fans 1 and 2 are in a substantially horizontal position and thus serve to support the aircraft AC, AC′ in combination with the diluted air flow ejected downwards by the jet deflector 8. In order to do this, as shown by a clockwise arrow in FIGS. 5 and 6, the first and second tilt fans 1 and 2 tilt about the main transmission shaft 7.


By way of example, there follows a description of how the convertible aircraft performs short or vertical landing.


In order to perform a short landing, the first and second tilt fans 1 and 2 are in a vertical position. The main wings A1, A2, A1′, A2′ lie in the slipstream from the first and second tilt fans 1 and 2. The high-lift flaps VF1, VF2, VF1′, VF2′ enable the slipstreams from these tilt fans to be deflected downwards, thereby significantly increasing the lift of the main wings A1, A2, A1′, A2′. This delays the stalling of the main wings A1, A2, A1′, A2′. Under such conditions, the approach speed is made slower, thereby implying that the distance needed for landing is very short.


The convertible aircraft AC, AC′ also enables landing to be performed vertically. Under such circumstances, it begins by converting from airplane mode to helicopter mode by progressively tilting the first and second tilt fans 1 and 2. Once these fans 1 and 2 are in the horizontal position, they can act together with the flow of diluted air ejected downwards by the jet deflector 8 to support the aircraft AC, AC′. The aircraft then acts as a helicopter and can land vertically.


The attitude of the convertible aircraft can be trimmed in airplane mode in various ways. A first solution consists in using two “canard” wings and winglets, each winglet being provided with a single flap, a second solution makes use of two “canard” wings together with a tail fin and horizontal tail stabilizers. Which embodiment is selected depends on how the engines are centered, on the payload of the aircraft, and also on the type of aircraft, i.e. whether it is a light aircraft (mass less than about 6 tonnes), or a heavy aircraft (mass greater than about 6 tonnes).


With reference to FIG. 1, the engine installation is situated behind the cabin, so the cabin occupies part of the fuselage only. Balancing the aircraft requires main wings A1′, A2′ to be used that are sweptback, i.e. directed towards the rear of the aircraft.


The ends of these main wings are provided with respective vertical elements known as winglets W.


These winglets W are commonly used on modern aircraft. They reduce the pressure difference between the upper and lower surfaces at the end of a wing so as to decrease the marginal vortex that is of a turbulent nature. As a result, the winglets W improve the vibration level of the aircraft. In addition, they increase the aspect ratio of the wings, thereby-reducing their drag.


Furthermore, for a light convertible aircraft AC′ of the invention, the main wings A1′, A2′ are located well towards the rear of the fuselage and they are sweptback considerably. Each winglet W can then act as a tail fin, being fitted with a respective a single flap V.


The positioning of the main wings A1′, A2′ on the fuselage F′ is of great importance. Main wings in the high position, i.e. arranged at the top of the fuselage, and main wings in the low position, i.e. arranged at the bottom of the fuselage manifestly do not have the same impact on the operation of the aircraft. In order to pass from airplane mode to helicopter mode, the first and second tilt fans 1, 2 are tilted so as to direct their thrust towards the ground. The length of time during which the main wings A1′, A2′ are exposed to the tilting slipstreams coming from the first and second tilt fans 1 and 2 must be minimized so as to avoid disturbing the operation of the aircraft.


If the main wings are in the low position, the slipstreams coming from the first and second tilt fans 1 and 2 strike the top surface of the main wings A1′, A2′. Consequently, the lift of these main wings A1′, A2′ is decreased, which can lead to a major safety problem, i.e. loss of control of the aircraft AC′. Under such conditions, only a high position for the main wings A1′, A2′ can satisfy requirements.


With reference to FIG. 2, in a second embodiment, the convertible aircraft AC is of considerable weight. The engine installation is positioned in the top portion of the fuselage F, above the cabin. This disposition thus enables the cabin to occupy the major fraction of the fuselage F, and thus gives the convertible aircraft AC a large internal load-carrying capacity.


Centering of the convertible aircraft AC then requires swept forward main wings A1, A2 to be used, i.e. main wings extending towards the front of the aircraft. In this embodiment, the use of sweptback main wings would require the “canard” wings to be overdimensioned, which would make them particularly penalizing in terms of weight.


Since the main wings A1, A2 are swept forward, their ends are not towards the rear of the aircraft, but rather towards the middle thereof. Unlike the first embodiment, relating to a light convertible aircraft, winglets cannot act as tail fins since they would be situated too close to the center of gravity of the aircraft AC. A tail fin D is thus arranged at the rear of the fuselage. Advantageously, this tail fin D is also provided with tail stabilizers E, with the tail fin D contributing to control yaw and the stabilizers E to control pitch.


In order to avoid any loss of control of the convertible aircraft AC when converting from airplane mode to helicopter mode, the main wings A1, A2 are disposed on the fuselage F in the high position.


Naturally, implementation of the present invention can be varied in numerous ways. Although two embodiments are described above, it will be understood that it is not conceivable to identify exhaustively all possible embodiments. It is naturally possible to envisage replacing any of the means described by equivalent means, without thereby going beyond the ambit of the present invention.

Claims
  • 1. A convertible aircraft, comprising: first and second tilting ducted rotors on either side of the fuselage forward of the center of gravity of said aircraft; anda non-tilting fan that does not propel the aircraft and that cools an exhaust of the aircraft, said non-tilting fan being permanently in a vertical position inside the fuselage.
  • 2. A convertible aircraft according to claim 1, wherein two “canard” wings are on either side of said fuselage.
  • 3. A convertible aircraft according to claim 1, wherein two engines are in said fuselage and drive said non-tilting fan as well as the first and second tilting ducted rotors.
  • 4. A convertible aircraft according to claim 3, wherein said two engines drive said non-tilting fan and the first and second tilting ducted rotors via a single main gearbox.
  • 5. A convertible aircraft according to claim 3, further comprising an intake that provides cold air to said two engine and an exhaust duct that receives hot exhaust gases from said two engines, said non-tilting fan blowing the cold air from said intake directly into said exhaust duct, thereby creating a flow of diluted air in said exhaust duct.
  • 6. A convertible aircraft according to claim 5, further comprising a two-directional jet deflector at the rear of said aircraft that deflects said diluted flow of air when it is expelled from the aircraft.
  • 7. A convertible aircraft according to claim 3, wherein said engines are in the fuselage above the cabin of said convertible aircraft.
  • 8. A convertible aircraft according to claim 7, wherein said convertible aircraft is provided with two main wings disposed on either side of the fuselage, said main wings being sweptforward.
  • 9. A convertible aircraft according to claim 7, including a tail fin.
  • 10. A convertible aircraft according to claim 9, wherein said tail fin is associated with tail stabilizers.
  • 11. A convertible aircraft according to claim 7, wherein two distinct air inlets situated on top of the fuselage feed fresh air to said engines.
  • 12. A convertible aircraft according to claim 8, wherein said main wings are on top of the fuselage.
  • 13. A convertible aircraft according to claim 8, wherein said main wings are provided with double-slotted high-lift flaps.
  • 14. A convertible aircraft according to claim 11, wherein said non-tilting fan sucks in the air coming from said air inlets.
  • 15. A convertible aircraft, comprising: first and second tilting ducted rotors disposed on opposite sides of a fuselage of the aircraft forward of a center of gravity of the aircraft;two engines in said fuselage that drive a main gear box, said main gear box driving said first and second tilting ducted rotors;an intake that provides intake air to said two engines;an exhaust duct in said fuselage that receives exhaust from said two engines; anda cooling fan means for receiving the intake air from said intake and blowing the intake air directly into said exhaust duct and cooling the exhaust from said two engines, said cooling fan means being in said fuselage and driven by said main gear box.
  • 16. The convertible aircraft of claim 15, wherein said two engines are side-by-side spaced apart from each other in said fuselage, and wherein said cooling fan means is between said two engines.
  • 17. The convertible aircraft of claim 16, wherein said two engines define a passageway therebetween to said exhaust duct for the intake air blown by said cooling fan means.
  • 18. The convertible aircraft of claim 15, wherein said cooling fan means comprises a fan that is not part of a system that propels the aircraft.
Priority Claims (1)
Number Date Country Kind
03 15237 Dec 2003 FR national
US Referenced Citations (71)
Number Name Date Kind
1766844 Springer Jun 1930 A
1783458 Windsor Dec 1930 A
2502045 Johnson Mar 1950 A
2941749 Sullivan et al. Jun 1960 A
2961189 Doak Nov 1960 A
3033492 Henry May 1962 A
3038683 Henry Jun 1962 A
3065929 Holland, Jr. Nov 1962 A
3086731 Beckington Apr 1963 A
3089666 Quenzler May 1963 A
3106369 Borst Oct 1963 A
3117748 Edmonds Jan 1964 A
3120362 Lloyd et al. Feb 1964 A
3122343 Liebach et al. Feb 1964 A
3139244 Bright Jun 1964 A
3146590 Erwin Sep 1964 A
3155342 Ludwig et al. Nov 1964 A
3212731 Kappus Oct 1965 A
3278138 Haberkorn Oct 1966 A
3282534 Lascaris et al. Nov 1966 A
3284027 Marc Nov 1966 A
3286470 Gerlaugh Nov 1966 A
3289980 Gardner Dec 1966 A
3290885 Samuel Dec 1966 A
3335977 Meditz Aug 1967 A
3347496 Opfer jr. Oct 1967 A
3347793 Leathley Oct 1967 A
3388878 Peterson et al. Jun 1968 A
3469803 Schmielau Sep 1969 A
3486716 Haberkorn et al. Dec 1969 A
3499620 Sturm et al. Mar 1970 A
3532306 Meier Oct 1970 A
3606210 Busby Sep 1971 A
3618875 Kappus Nov 1971 A
3739580 Bland et al. Jun 1973 A
3972490 Zimmermann et al. Aug 1976 A
4022405 Peterson May 1977 A
4071207 Piasecki et al. Jan 1978 A
4116405 Bacchi et al. Sep 1978 A
4296896 Kress et al. Oct 1981 A
4456203 Louthan Jun 1984 A
4469294 Clifton Sep 1984 A
4492353 Phillips Jan 1985 A
4789115 Koutsoupidis Dec 1988 A
4828203 Clifton et al. May 1989 A
4880071 Tracy Nov 1989 A
4898343 Kamo Feb 1990 A
5054716 Wilson Oct 1991 A
5115996 Moller May 1992 A
5131605 Kress Jul 1992 A
5161741 Seyfang Nov 1992 A
5275356 Bollinger et al. Jan 1994 A
5419514 Ducan May 1995 A
5890441 James Apr 1999 A
6254032 Bucher Jul 2001 B1
6260793 Balayn et al. Jul 2001 B1
6467726 Hosoda Oct 2002 B1
6607161 Krysinski et al. Aug 2003 B1
6629670 Shah Oct 2003 B1
6655631 Austen-Brown Dec 2003 B2
6708920 Fukuyama Mar 2004 B2
6843447 Morgan Jan 2005 B2
6886776 Wagner et al. May 2005 B2
6892980 Kawai May 2005 B2
20020189230 Franchet et al. Dec 2002 A1
20030062442 Milde, Jr. Apr 2003 A1
20030080242 Kawai May 2003 A1
20030106959 Fukuyama Jun 2003 A1
20040026563 Moller Feb 2004 A1
20050133662 Magre Jun 2005 A1
20060016930 Pak Jan 2006 A1
Foreign Referenced Citations (2)
Number Date Country
1 282 421 Jan 1962 FR
WO 03066429 Aug 2003 WO
Related Publications (1)
Number Date Country
20060022084 A1 Feb 2006 US