The present disclosure relates, in general, to aircraft configured to convert between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation and, in particular, to aircraft operable for autonomous cargo delivery.
Fixed-wing aircraft, such as airplanes, are capable of flight using wings that generate lift responsive to the forward airspeed of the aircraft, which is generated by thrust from one or more jet engines or propellers. The wings generally have an airfoil cross section that deflects air downward as the aircraft moves forward, generating the lift force to support the airplane in flight. Fixed-wing aircraft, however, typically require a runway that is hundreds or thousands of feet long for takeoff and landing. Unlike fixed-wing aircraft, vertical takeoff and landing (VTOL) aircraft do not require runways. Instead, VTOL aircraft are capable of taking off, hovering and landing vertically. One example of VTOL aircraft is a helicopter which is a rotorcraft having one or more rotors that provide lift and thrust to the aircraft. The rotors not only enable hovering and vertical takeoff and landing, but also enable, forward, backward and lateral flight. These attributes make helicopters highly versatile for use in congested, isolated or remote areas where fixed-wing aircraft may be unable to take off and land. Helicopters, however, typically lack the forward airspeed of fixed-wing aircraft.
A tiltrotor aircraft is another example of a VTOL aircraft. Tiltrotor aircraft generate lift and propulsion using proprotors that are typically coupled to nacelles mounted near the ends of a fixed wing. The nacelles rotate relative to the fixed wing such that the proprotors have a generally horizontal plane of rotation for vertical takeoff, hovering and landing and a generally vertical plane of rotation for forward flight, wherein the fixed wing provides lift and the proprotors provide forward thrust. In this manner, tiltrotor aircraft combine the vertical lift capability of a helicopter with the speed and range of fixed-wing aircraft. Tiltrotor aircraft, however, typically suffer from downwash inefficiencies during vertical takeoff and landing due to interference caused by the fixed wing. A further example of a VTOL aircraft is a tiltwing aircraft that features a rotatable wing that is generally horizontal for forward flight and rotates to a generally vertical orientation for vertical takeoff and landing. Propellers are coupled to the rotating wing to provide the required vertical thrust for takeoff and landing and the required forward thrust to generate lift from the wing during forward flight. The tiltwing design enables the slipstream from the propellers to strike the wing on its smallest dimension, thus improving vertical thrust efficiency as compared to tiltrotor aircraft. Tiltwing aircraft, however, are more difficult to control during hover as the vertically tilted wing provides a large surface area for crosswinds typically requiring tiltwing aircraft to have either cyclic rotor control or an additional thrust station to generate a moment.
In a first aspect, the present disclosure is directed to an aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes a fuselage having an aerodynamic shape with a leading edge and a trailing edge separated by a chord length and first and second sides separated by a span length. The fuselage having a first cargo bay. First and second wings are coupled to the fuselage proximate the first and second sides, respectively. A distributed thrust array includes a first pair of propulsion assemblies coupled to the first wing and a second pair of propulsion assemblies coupled to the second wing. A flight control system is operably associated with the distributed thrust array and configured to independently control each of the propulsion assemblies. The first side of the fuselage includes a first door configured to provide access to the first cargo bay from an exterior of the aircraft with a predetermined clearance relative to each of the propulsion assemblies of the first pair of propulsion assemblies.
In some embodiments, in the VTOL orientation, the first wing may be substantially forward of the fuselage and the second wing may be substantially aft of the fuselage. In such embodiment, in the biplane orientation, the first wing may be substantially below the fuselage and the second wing may be substantially above the fuselage. In certain embodiments, the first and second wings may be substantially parallel to each other. In some embodiments, the first and second wings may be swept wings. In such embodiments, each of the first and second wings may have an apex proximate the leading edge of the fuselage such that, in the VTOL orientation, the propulsion assemblies are below the apexes of the first and second wings and such that, in the biplane orientation, the propulsion assemblies are aft of the apexes of the first and second wings. In certain embodiments, in the VTOL orientation, the propulsion assemblies may be below the leading edge of the fuselage and, in the biplane orientation, the propulsion assemblies may be aft of the leading edge of the fuselage.
In some embodiments, the fuselage may have a second cargo bay and the first side of the fuselage may include a second door configured to provide access to the second cargo bay from the exterior of the aircraft with the predetermined clearance relative to each of the propulsion assemblies of the first pair of propulsion assemblies. In certain embodiments, a power system may be disposed within the fuselage such as a plurality of batteries. In some embodiments, each of the propulsion assemblies may include an electric motor and a rotor assembly coupled to the electric motor. In certain embodiments, the distributed thrust array may be a two-dimensional thrust array. In some embodiments, the flight control system may be configured for autonomous flight control and/or unmanned cargo delivery.
In certain embodiments, in the biplane orientation, the first door may be configured for cargo drop operations. In such embodiments, a first door actuator may be configured to receive commands from the flight control system and operate the first door between open and closed positions during the cargo drop operations. In some embodiments, in the VTOL orientation, a trailing edge door may be configured for cargo drop operations. In such embodiments, a trailing edge door actuator may be configured to receive commands from the flight control system and operate the trailing edge door between open and closed positions during the cargo drop operations.
In a second aspect, the present disclosure is directed to an autonomous cargo delivery aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes a fuselage having an aerodynamic shape with a leading edge and a trailing edge separated by a chord length and first and second sides separated by a span length. The fuselage having a first cargo bay. First and second swept wings are coupled to the fuselage proximate the first and second sides, respectively. A distributed thrust array includes a first pair of propulsion assemblies coupled to the first swept wing and a second pair of propulsion assemblies coupled to the second swept wing. A flight control system is operably associated with the distributed thrust array and configured to independently control each of the propulsion assemblies. The first side of the fuselage includes a first door configured to provide access to the first cargo bay from an exterior of the aircraft with a predetermined clearance relative to each of the propulsion assemblies of the first pair of propulsion assemblies. In the VTOL orientation, the first swept wing is substantially forward of the fuselage, the second swept wing is substantially aft of the fuselage and the propulsion assemblies are below the leading edge of the fuselage. In the biplane orientation, the first swept wing is substantially below the fuselage, the second swept wing is substantially above the fuselage, the propulsion assemblies are aft of the leading edge of the fuselage and the first door is configured for cargo drop operations.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts, which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative and do not delimit the scope of the present disclosure. In the interest of clarity, not all features of an actual implementation may be described in the present disclosure. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present disclosure, the devices, members, apparatuses, and the like described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction. As used herein, the term “coupled” may include direct or indirect coupling by any means, including moving and/or non-moving mechanical connections.
Referring to
In the illustrated embodiment, aircraft 10 has an airframe 12 including wings 14, 16 and fuselage 18. Wings 14, 16 each have an airfoil cross-section that generates lift responsive to the forward airspeed of aircraft 10 in the biplane orientation. Each of wings 14, 16 may be formed as single members or may be formed from multiple wing sections such as left and right sections. The outer skins for wings 14, 16 are preferably formed from high strength and lightweight materials such as fiberglass, carbon, plastic, metal or other suitable material or combination of materials. As best seen in
In the illustrated embodiment, wings 14, 16 are substantially parallel with each other with fuselage 18 extending substantially perpendicularly therebetween. Fuselage 18 has an aerodynamic shape with a leading edge 18a and a trailing edge 18b with a fuselage chord length extending therebetween, two sides 18c, 18d with a fuselage span length extending therebetween and a front 18e and back 18f with a fuselage thickness extending therebetween. The aerodynamic shape of fuselage 18 is configured to minimize drag during high speed forward flight. In addition, the fuselage span length is configured to minimize interference drag between wings 14, 16. For example, the fuselage span length may have a ratio to the wingspan of wings 14, 16 of between 1 to 2 and 1 to 3 such as a ratio of about 1 to 2.5. In other embodiments, the ratio of the fuselage span length to the wingspan may be either greater than 1 to 2 or less than 1 to 3. Fuselage 18 is preferably formed from high strength and lightweight materials such as fiberglass, carbon, plastic, metal or other suitable material or combination of materials. In the illustrated embodiment, wing 14 is coupled to fuselage 18 proximate side 18d and wing 16 is coupled to fuselage 18 at proximate to side 18c forming stiff connections therebetween. In the VTOL orientation, wing 16 is substantially forward of fuselage 18 and wing 14 is substantially aft of fuselage 18. In the biplane orientation, wing 16 is substantially below fuselage 18 and wing 14 is substantially above fuselage 18.
In the illustrated embodiment, fuselage 18 contains a power system 20 depicted as a plurality of batteries, as best seen in
In the illustrated embodiment, fuselage 18 houses the flight control system 30 of aircraft 10. Flight control system 30 is preferably a redundant digital flight control system including multiple independent flight control computers. For example, the use of a triply redundant flight control system 30 improves the overall safety and reliability of aircraft 10 in the event of a failure in flight control system 30. Flight control system 30 preferably includes non-transitory computer readable storage media including a set of computer instructions executable by one or more processors for controlling the operation of aircraft 10. Flight control system 30 may be implemented on one or more general-purpose computers, special purpose computers or other machines with memory and processing capability. For example, flight control system 30 may include one or more memory storage modules including, but is not limited to, internal storage memory such as random access memory, non-volatile memory such as read only memory, removable memory such as magnetic storage memory, optical storage, solid-state storage memory or other suitable memory storage entity. Flight control system 30 may be a microprocessor-based system operable to execute program code in the form of machine-executable instructions. In addition, flight control system 30 may be selectively connectable to other computer systems via a proprietary encrypted network, a public encrypted network, the Internet or other suitable communication network that may include both wired and wireless connections.
Wings 14, 16 contain a communication network that enables power system 20 and flight control system 30 to communicate with the distributed thrust array of aircraft 10. In the illustrated embodiment, aircraft 10 has a two-dimensional distributed thrust array that is coupled to airframe 12. As used herein, the term “two-dimensional thrust array” refers to a plurality of thrust generating elements that occupy a two-dimensional space in the form of a plane. A minimum of three thrust generating elements is required to form a “two-dimensional thrust array.” A single aircraft may have more than one “two-dimensional thrust array” if multiple groups of at least three thrust generating elements each occupy separate two-dimensional spaces thus forming separate planes. As used herein, the term “distributed thrust array” refers to the use of multiple thrust generating elements each producing a portion of the total thrust output. The use of a “distributed thrust array” provides redundancy to the thrust generation capabilities of the aircraft including fault tolerance in the event of the loss of one of the thrust generating elements. A “distributed thrust array” can be used in conjunction with a “distributed power system” in which power to each of the thrust generating elements is supplied by a local or nacelle-based power element instead of a centralized power system.
The two-dimensional distributed thrust array of aircraft 10 includes a plurality of propulsion assemblies, individually denoted as 34a, 34b, 34c, 34d and collectively referred to as propulsion assemblies 34. In the illustrated embodiment, propulsion assemblies 34a, 34b are coupled to wing 14 and propulsion assemblies 34c, 34d are coupled to wing 16. More specifically, propulsion assembly 34a is coupled to an upper or forward end of nacelle body 36a that is fixably attached to wingtip 14a, propulsion assembly 34b is coupled to an upper or forward end of nacelle body 36b that is fixably attached to wingtip 14b, propulsion assembly 34c is coupled to an upper or forward end of nacelle body 36c that is fixably attached to wingtip 16c and propulsion assembly 34d is coupled to an upper or forward end of nacelle body 36d that is fixably attached to wingtip 16d. By positioning propulsion assemblies 34a, 34b, 34c, 34d at wingtip 14a, 14b, 16c, 16d, the thrust and torque generating elements are positioned at the maximum outboard distance from the center of gravity of aircraft 10 located at the intersection of axes 10a, 10b, 10c. The outboard locations of propulsion assemblies 34 provide dynamic stability to aircraft 10 in hover and a high dynamic response in the VTOL orientation of aircraft 10 enabling efficient and effective pitch, yaw and roll control by changing the thrust, thrust vector and/or torque output of certain propulsion assemblies 34 relative to other propulsion assemblies 34.
Even though the illustrated embodiment depicts four propulsion assemblies 34, the distributed thrust array of aircraft 10 could have other numbers of propulsion assemblies both greater than or less than four. Also, even though the illustrated embodiment depicts propulsion assemblies 34 in a wingtip mounted configuration, the distributed thrust array of aircraft 10 could have propulsion assemblies coupled to the wings in other configurations such as a mid-span configuration. In the illustrated embodiment, propulsion assemblies 34 are variable speed propulsion assemblies having fixed pitch rotor blades and thrust vectoring capability. Depending upon the implementation, propulsion assemblies 34 may have longitudinal thrust vectoring capability, lateral thrust vectoring capability or omnidirectional thrust vectoring capability. In other embodiments, propulsion assemblies 34 may be single speed propulsion assemblies, may have variable pitch rotor blades and/or may be non-thrust vectoring propulsion assemblies.
Propulsion assemblies 34 are independently attachable to and detachable from nacelle bodies 36 and are preferably standardized and/or interchangeable units such as line replaceable units or LRUs providing easy installation and removal from airframe 12. The use of line replaceable propulsion units is beneficial in maintenance situations if a fault is discovered with one of the propulsion assemblies. In this case, the faulty propulsion assembly 34 can be decoupled from airframe 12 by simple operations and another propulsion assembly 34 can then be attached to aircraft 10. In other embodiments, propulsion assemblies 34 may be integral with nacelle bodies 36.
Aircraft 10 has a damping landing gear system that includes landing gear assembly 38a coupled to a lower or aft end of nacelle body 36a, landing gear assembly 38b coupled to a lower or aft end of nacelle body 36b, landing gear assembly 38c coupled to a lower or aft end of nacelle body 36c and landing gear assembly 38d coupled to a lower or aft end of nacelle body 36d. By positioning landing gear assemblies 38a, 38b, 38c, 38d at wingtip 14a, 14b, 16c, 16d and by having a relatively low center of gravity, aircraft 10 maintains suitably high landing stability and tip-over stability. In the illustrated embodiment, each landing gear assembly 38 including a spring housing forming a spring chamber with a spring disposed therein and a plunger slidably coupled to the spring housing and movable between a compressed position and an extended position. The spring biases the plunger into the extended position during flight and the landing force compresses the plunger into the compressed position against the bias of the spring, thereby absorbing at least a portion of the landing force. In addition, the spring biasing force acting on the plunger when aircraft 10 is positioned on a landing surface generates a push-off effect to aid during takeoff maneuvers. In other embodiments, the landing gear assemblies may be passively operated pneumatic landing struts or actively operated telescoping landing struts. In still other embodiments, the landing gear assemblies may include wheels that enable aircraft 10 to taxi and perform other ground maneuvers. In such embodiments, the landing gear assemblies may provide a passive brake system or may include active brakes such as an electromechanical braking system or a manual braking system to facilitate parking during ground operations.
Aircraft 10 has a distributed array of aerodynamic control surfaces carried by landing gear assemblies 38. More specifically, elevon 40a is rotatably coupled to landing gear assembly 38a, elevon 40b is rotatably coupled to landing gear assembly 38b, elevon 40c is rotatably coupled to landing gear assembly 38c and elevon 40d is rotatably coupled to landing gear assembly 38d. In the illustrated embodiment, elevons 40 are pivoting aerosurfaces that are rotatable about respective elevon axes. In the illustrated embodiment, elevons 40a, 40b have a dihedral angle of about forty-five degrees relative to wing 14 and elevons 40c, 40d have an anhedral angle of about forty-five degrees relative to wing 16. In other embodiments, elevons 40 could have other angles relative to the wings such as angles less than or greater than forty-five degrees including being parallel to or perpendicular with the respective wings, such angles being adjustable during ground operation or during flight. The specific design of elevons 40 including the elevon angle relative to the wings, the elevon sweep angle, the elevon length and the like will be determined based upon aerodynamic loads and performance requirements, as will be understood by those having ordinary skill in the art. When operated collectively, elevons 40 serve as elevators to control the pitch or angle of attack of aircraft 10, in the biplane orientation. When operated differentially, elevons 40 serve as ailerons to control the roll or bank of aircraft 10, in the biplane orientation. In addition, elevons 40 may be used to generate yaw, roll and pitch control moments to complement other control authority mechanisms in hover or to provide standalone control authority in hover.
Land gear assemblies 38 are independently attachable to and detachable from nacelle bodies 36 and are preferably standardized and/or interchangeable units such as line replaceable units or LRUs providing easy installation and removal from airframe 12. The use of line replaceable land gear units is beneficial in maintenance situations if a fault is discovered with one of the land gear assemblies. In this case, the faulty land gear assembly 38 can be decoupled from airframe 12 by simple operations and another land gear assembly 38 can then be attached to aircraft 10. In other embodiments, land gear assemblies 38 may be integral with nacelle bodies 36.
In the illustrated embodiment, the outer housings of each group of a propulsion assembly 34, a nacelle body 36 and a land gear assembly 38 form a nacelle such as nacelle 42a, nacelle 42b, nacelle 42c and nacelle 42d. Each nacelle 42 houses an electronics node including sensor, controllers, actuators and other electronic components used to operate systems associated with the respective propulsion assembly 34 and a land gear assembly 38. For example, nacelle 42d houses a gimbal actuator 44d, an electronic speed controller 46d, a sensor array 48d and an elevon actuator 50d, as best seen in
Each propulsion assembly 34 includes a rotor assembly that is coupled to an output drive of a respective electric motor that rotates the rotor assembly in a rotational plane to generate thrust for aircraft 10. For example, propulsion assembly 34d includes rotor assembly 52d and electric motor 54d. In the VTOL orientation of aircraft 10, the uppermost part of rotor assemblies 52 is below the apexes of wings 14, 16 and leading edge 18a of fuselage 18. Likewise, in the biplane orientation of aircraft 10, the forwardmost part of rotor assemblies 52 is aft of the apexes of wings 14, 16 and leading edge 18a of fuselage 18. In other embodiments, the rotors assemblies could extend beyond the apexes of wings 14, 16 and/or beyond leading edge 18a of fuselage 18. In the illustrated embodiment, rotor assemblies 52 each include four rotor blades having a fixed pitch. In other embodiments, the rotor assemblies could have other numbers of rotor blades including rotor assemblies having less than or more than four rotor blades. Alternatively or additionally, the rotor assemblies could have variable pitch rotor blades with collective and/or cyclic pitch control. As best seen in
Together, each respective electric motor and rotor assembly forms a propulsion system. In the illustrated embodiment, each propulsion system has mounted to a nacelle 42 on a gimbal 56, such as gimbal 56d, that provides a two-axis tilting degree of freedom such that the electric motor and rotor assembly tilt together relative to the nacelle enabling propulsion assemblies 34 to have omnidirectional thrust vectoring capability. In the illustrated embodiment, the maximum angle of the thrust vector may be between 10 degrees and 30 degrees such as between 15 degrees and 25 degrees or about 20 degrees. Notably, using a 20-degree thrust vector yields a lateral component of thrust that is about 34 percent of total thrust. In other embodiments, the propulsion systems may have a single-axis tilting degree of freedom in which case, the propulsion assemblies could act as longitudinal and/or lateral thrust vectoring propulsion assemblies.
Aircraft 10 may be a manned or unmanned aircraft. Flight control system 30 may autonomously control some or all aspects of flight operations for aircraft 10. Flight control system 30 is also operable to communicate with remote systems, such as a ground station via a wireless communications protocol. The remote system may be operable to receive flight data from and provide commands to flight control system 30 to enable remote flight control over some or all aspects of flight operations for aircraft 10. The remote flight control and/or autonomous flight control may be augmented or supplanted by onboard pilot flight control during manned missions. Regardless of the input, aircraft 10 preferably utilizes a fly-by-wire system that transmits electronic signals from flight control system 30 to the actuators and controllers of aircraft systems to control the flight dynamics of aircraft 10 including controlling the movements of rotor assemblies 52, gimbals 56 and elevons 40. Flight control system 30 communicates with the controlled systems via a fly-by-wire communications network within airframe 12. In addition, flight control system 30 receives data from a plurality of sensors 58 such as one or more position sensors, attitude sensors, speed sensors, altitude sensors, heading sensors, environmental sensors, fuel sensors, temperature sensors, location sensors and the like to enhance flight control capabilities. Flight control system 30 receives sensor data from and sends flight command information to the electronics nodes such that each propulsion assembly 34 and each land gear assembly 40 may be individually and independently controlled and operated. For example, flight control system 30 is operable to individually and independently control the speed and the thrust vector of each propulsion assembly 34 and the position of each elevon 40.
Referring additionally to
As best seen in
After vertical ascent to the desired elevation, aircraft 10 may begin the transition from thrust-borne lift to wing-borne lift. As best seen from the progression of
As best seen in
As aircraft 10 approaches the desired location, aircraft 10 may begin its transition from wing-borne lift to thrust-borne lift. As best seen from the progression of
Referring next to
Referring additionally to
Flight control system 112 preferably includes a non-transitory computer readable storage medium including a set of computer instructions executable by a processor. Flight control system 112 may be a triply redundant system implemented on one or more general-purpose computers, special purpose computers or other machines with memory and processing capability. For example, flight control system 112 may include one or more memory storage modules including, but is not limited to, internal storage memory such as random access memory, non-volatile memory such as read only memory, removable memory such as magnetic storage memory, optical storage, solid-state storage memory or other suitable memory storage entity. Flight control system 112 may be a microprocessor-based system operable to execute program code in the form of machine-executable instructions. In addition, flight control system 112 may be selectively connectable to other computer systems via a proprietary encrypted network, a public encrypted network, the Internet or other suitable communication network that may include both wired and wireless connections.
In the illustrated embodiment, flight control system 112 includes a command module 132 and a monitoring module 134. It is to be understood by those skilled in the art that these and other modules executed by flight control system 112 may be implemented in a variety of forms including hardware, software, firmware, special purpose processors and combinations thereof. Flight control system 112 receives input from a variety of sources including internal sources such as sensors 136, controllers/actuators 138, propulsion systems 102 and landing systems 106 and external sources such as remote system 124 as well as global positioning system satellites or other location positioning systems and the like. For example, as discussed herein, flight control system 112 may receive a flight plan for a mission from remote system 124. Thereafter, flight control system 112 may be operable to autonomously control all aspects of flight of an aircraft of the present disclosure.
For example, during the various operating modes of aircraft 100 including vertical takeoff and landing flight mode, hover flight mode, forward flight mode and transitions therebetween, command module 132 provides commands to controllers/actuators 138. These commands enable independent operation of each propulsion system 102 including rotor speed and thrust vector and each landing system 106 including elevon position. Flight control system 112 receives feedback from controllers/actuators 138, propulsion systems 102 and landing systems 106. This feedback is processed by monitoring module 134 that can supply correction data and other information to command module 132 and/or controllers/actuators 138. Sensors 136, such as an attitude and heading reference system (AHRS) with solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers as well as other sensors including positioning sensors, speed sensors, environmental sensors, fuel sensors, temperature sensors, location sensors and the like also provide information to flight control system 112 to further enhance autonomous control capabilities.
Some or all of the autonomous control capability of flight control system 112 can be augmented or supplanted by remote flight control from, for example, remote system 124. Remote system 124 may include one or computing systems that may be implemented on general-purpose computers, special purpose computers or other machines with memory and processing capability. For example, the computing systems may include one or more memory storage modules including, but is not limited to, internal storage memory such as random access memory, non-volatile memory such as read only memory, removable memory such as magnetic storage memory, optical storage memory, solid-state storage memory or other suitable memory storage entity. The computing systems may be microprocessor-based systems operable to execute program code in the form of machine-executable instructions. In addition, the computing systems may be connected to other computer systems via a proprietary encrypted network, a public encrypted network, the Internet or other suitable communication network that may include both wired and wireless connections. The communication network may be a local area network, a wide area network, the Internet, or any other type of network that couples a plurality of computers to enable various modes of communication via network messages using suitable communication techniques, such as transmission control protocol/internet protocol, file transfer protocol, hypertext transfer protocol, internet protocol security protocol, point-to-point tunneling protocol, secure sockets layer protocol or other suitable protocol. Remote system 124 communicates with flight control system 112 via a communication link 130 that may include both wired and wireless connections.
While operating remote control application 128, remote system 124 is configured to display information relating to one or more aircraft of the present disclosure on one or more flight data display devices 140. Display devices 140 may be configured in any suitable form, including, for example, liquid crystal displays, light emitting diode displays or any suitable type of display. Remote system 124 may also include audio output and input devices such as a microphone, speakers and/or an audio port allowing an operator to communicate with other operators or a base station. The display device 140 may also serve as a remote input device 142 if a touch screen display implementation is used, however, other remote input devices, such as a keyboard or joystick, may alternatively be used to allow an operator to provide control commands to an aircraft being operated responsive to remote control.
Aircraft 10 may operate in many roles including military, commercial, scientific and recreational roles, to name a few. For example, as best seen in
Even though fuselage 18 has been depicted and described as having two cargo bays 60a, 60b and two side doors 64a, 64b, it should be understood by those having ordinary skill in the art that a fuselage of the present disclosure could have any number of cargo bays and/or any number of side doors both greater than or less than two without departing from the principles of the present disclosure. Also, even though fuselage 18 has been depicted and described as having side doors 64a, 64b on only one side of fuselage 18, it should be understood by those having ordinary skill in the art that a fuselage of the present disclosure could have one or more side doors on each side of the fuselage such that access to each of the cargo bays is available from either side of the aircraft or a fuselage of the present disclosure could have one or more side doors on each side of the fuselage that provide access to only certain of the cargo bays from either side of the aircraft without departing from the principles of the present disclosure.
In the illustrated embodiment, fuselage 18 and side doors 64a, 64b are configured to provide access to upper and lower cargo bays 60a, 60b from the exterior of aircraft 10 while providing a predetermined clearance C relative to propulsion assemblies 34c, 34d and in particular to rotor assemblies 52c, 52d, as best seen in
In addition to loading and unloading aircraft 10 while positioned on a surface, aircraft 10 of the present disclosure has package release capabilities in association with cargo transportation. This package release capability allows aircraft 10 to deliver cargo to a desired location following transportation thereof without the requirement for landing by opening any one of the side doors on the lower side of aircraft 10 during flight and releasing the desired package or packages. For example, as best seen in
The foregoing description of embodiments of the disclosure has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the scope of the present disclosure. Such modifications and combinations of the illustrative embodiments as well as other embodiments will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
The present application is a continuation-in-part of co-pending application Ser. No. 16/661,740 filed Oct. 23, 2019, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1655113 | Nikola | Jan 1928 | A |
2601090 | James | Jun 1952 | A |
2655997 | Peterson | Oct 1953 | A |
2688843 | Pitt | Sep 1954 | A |
3002712 | Sterling | Oct 1961 | A |
3081964 | Quenzler | Mar 1963 | A |
3181810 | Olson | May 1965 | A |
3259343 | Roppel | Jul 1966 | A |
3289980 | Gardner | Dec 1966 | A |
3350035 | Schlieben | Oct 1967 | A |
3592412 | Glatfelter | Jul 1971 | A |
3618875 | Kappus | Nov 1971 | A |
3783618 | Kawamura | Jan 1974 | A |
3916588 | Magill | Nov 1975 | A |
4243358 | Carlock et al. | Jan 1981 | A |
4458864 | Colombo et al. | Jul 1984 | A |
4571157 | Eickmann | Feb 1986 | A |
4596368 | Schmittle | Jun 1986 | A |
4613098 | Eickmann | Sep 1986 | A |
4741672 | Breuner | May 1988 | A |
4771967 | Geldbaugh | Sep 1988 | A |
4913377 | Eickmann | Apr 1990 | A |
4925131 | Eickmann | May 1990 | A |
5131605 | Kress | Jul 1992 | A |
5188512 | Thornton | Feb 1993 | A |
5592894 | Johnson | Jan 1997 | A |
5842667 | Jones | Dec 1998 | A |
6086015 | MacCready | Jul 2000 | A |
6170778 | Cycon et al. | Jan 2001 | B1 |
6260793 | Balayn et al. | Jul 2001 | B1 |
6270038 | Cycon et al. | Aug 2001 | B1 |
6402088 | Syrovy et al. | Jun 2002 | B1 |
6655631 | Austen-Brown | Dec 2003 | B2 |
6845939 | Baldwin | Jan 2005 | B1 |
6886776 | Wagner et al. | May 2005 | B2 |
6892980 | Kawai | May 2005 | B2 |
7059562 | Baldwin | Jun 2006 | B2 |
7150429 | Kusic | Dec 2006 | B2 |
7210654 | Cox et al. | May 2007 | B1 |
7465236 | Wagels | Dec 2008 | B2 |
7472863 | Pak | Jan 2009 | B2 |
7555893 | Okai et al. | Jul 2009 | B2 |
D598838 | Carr | Aug 2009 | S |
7984684 | Hinderks | Jul 2011 | B2 |
8152096 | Smith | Apr 2012 | B2 |
8393564 | Kroo | Mar 2013 | B2 |
8505846 | Sanders | Aug 2013 | B1 |
8602348 | Bryant | Dec 2013 | B2 |
8646720 | Shaw | Feb 2014 | B2 |
8733690 | Bevirt et al. | May 2014 | B2 |
8800912 | Oliver | Aug 2014 | B2 |
8820672 | Erben et al. | Sep 2014 | B2 |
8833692 | Yoeli | Sep 2014 | B2 |
8909391 | Peeters et al. | Dec 2014 | B1 |
8948935 | Peeters et al. | Feb 2015 | B1 |
9022312 | Kosheleff | May 2015 | B2 |
9045226 | Piasecki et al. | Jun 2015 | B2 |
9087451 | Jarrell | Jul 2015 | B1 |
9108744 | Takeuchi | Aug 2015 | B2 |
9109575 | Weddendorf et al. | Aug 2015 | B2 |
9120560 | Armer et al. | Sep 2015 | B1 |
9127908 | Miralles | Sep 2015 | B2 |
9162753 | Panto et al. | Oct 2015 | B1 |
9187174 | Shaw | Nov 2015 | B2 |
9193460 | Laudrain | Nov 2015 | B2 |
9221538 | Takahashi et al. | Dec 2015 | B2 |
9242714 | Wang et al. | Jan 2016 | B2 |
9254916 | Yang | Feb 2016 | B2 |
9284049 | Wang et al. | Mar 2016 | B1 |
9321530 | Wang et al. | Apr 2016 | B2 |
9376208 | Gentry | Jun 2016 | B1 |
9388794 | Weddendorf et al. | Jul 2016 | B2 |
9403593 | Downey et al. | Aug 2016 | B2 |
9440736 | Bitar | Sep 2016 | B2 |
9463875 | Abuelsaad et al. | Oct 2016 | B2 |
9493225 | Wang et al. | Nov 2016 | B2 |
9610817 | Piasecki et al. | Apr 2017 | B1 |
9643720 | Hesselbarth | May 2017 | B2 |
9694908 | Razroev | Jul 2017 | B2 |
9694911 | Bevirt et al. | Jul 2017 | B2 |
9714087 | Matsuda | Jul 2017 | B2 |
9798322 | Bachrach et al. | Oct 2017 | B2 |
9800091 | Nugent, Jr. et al. | Oct 2017 | B2 |
9821909 | Moshe | Nov 2017 | B2 |
9963228 | McCullough et al. | May 2018 | B2 |
9994313 | Claridge et al. | Jun 2018 | B2 |
10011351 | McCullough et al. | Jul 2018 | B2 |
10124890 | Sada-Salinas et al. | Nov 2018 | B2 |
10183746 | McCullough et al. | Jan 2019 | B2 |
10214285 | McCullough et al. | Feb 2019 | B2 |
10220944 | McCullough et al. | Mar 2019 | B2 |
10227133 | McCullough et al. | Mar 2019 | B2 |
10232950 | McCullough et al. | Mar 2019 | B2 |
10301016 | Bondarev et al. | May 2019 | B1 |
10322799 | McCullough et al. | Jun 2019 | B2 |
20020100834 | Baldwin | Aug 2002 | A1 |
20020100835 | Kusic | Aug 2002 | A1 |
20030062443 | Wagner et al. | Apr 2003 | A1 |
20040245374 | Morgan | Dec 2004 | A1 |
20050045765 | Pitt | Mar 2005 | A1 |
20060091258 | Chiu et al. | May 2006 | A1 |
20060266881 | Hughey | Nov 2006 | A1 |
20070212224 | Podgurski | Sep 2007 | A1 |
20070221780 | Builta | Sep 2007 | A1 |
20090008499 | Shaw | Jan 2009 | A1 |
20100051755 | Nichols | Mar 2010 | A1 |
20100147993 | Annati et al. | Jun 2010 | A1 |
20100193644 | Karem | Aug 2010 | A1 |
20100295321 | Bevirt | Nov 2010 | A1 |
20110001001 | Bryant | Jan 2011 | A1 |
20110042508 | Bevirt | Feb 2011 | A1 |
20110042509 | Bevirt et al. | Feb 2011 | A1 |
20110057453 | Roberts | Mar 2011 | A1 |
20110121570 | Bevirt et al. | May 2011 | A1 |
20110315806 | Piasecki et al. | Dec 2011 | A1 |
20120209456 | Harmon et al. | Aug 2012 | A1 |
20120234968 | Smith | Sep 2012 | A1 |
20130020429 | Kroo | Jan 2013 | A1 |
20130175404 | Shefer | Jul 2013 | A1 |
20130341458 | Sutton et al. | Dec 2013 | A1 |
20140018979 | Goossen et al. | Jan 2014 | A1 |
20140097290 | Leng | Apr 2014 | A1 |
20140339372 | Dekel et al. | Nov 2014 | A1 |
20150012154 | Senkel et al. | Jan 2015 | A1 |
20150014475 | Taylor et al. | Jan 2015 | A1 |
20150136897 | Seibel et al. | May 2015 | A1 |
20150284079 | Matsuda | Oct 2015 | A1 |
20150285165 | Steinwandel et al. | Oct 2015 | A1 |
20150298788 | Wang | Oct 2015 | A1 |
20160068265 | Hoareau et al. | Mar 2016 | A1 |
20160180717 | Ubhi et al. | Jun 2016 | A1 |
20160214712 | Fisher et al. | Jul 2016 | A1 |
20170008627 | Soto et al. | Jan 2017 | A1 |
20170021924 | Kubik et al. | Jan 2017 | A1 |
20170066531 | McAdoo | Mar 2017 | A1 |
20170097644 | Fegely et al. | Apr 2017 | A1 |
20170144746 | Schank et al. | May 2017 | A1 |
20170158312 | Alber et al. | Jun 2017 | A1 |
20170174342 | Huang | Jun 2017 | A1 |
20170240274 | Regev | Aug 2017 | A1 |
20170297699 | Alber et al. | Oct 2017 | A1 |
20170327219 | Alber | Nov 2017 | A1 |
20170334557 | Alber et al. | Nov 2017 | A1 |
20180002011 | McCullough et al. | Jan 2018 | A1 |
20180002012 | McCullough et al. | Jan 2018 | A1 |
20180002013 | McCullough et al. | Jan 2018 | A1 |
20180002014 | McCullough et al. | Jan 2018 | A1 |
20180002015 | McCullough et al. | Jan 2018 | A1 |
20180002016 | McCullough et al. | Jan 2018 | A1 |
20180002026 | Oldroyd | Jan 2018 | A1 |
20180002027 | McCullough et al. | Jan 2018 | A1 |
20180022467 | Alber | Jan 2018 | A1 |
20180044011 | Reichert | Feb 2018 | A1 |
20180244377 | Chan | Aug 2018 | A1 |
20180244383 | Valente et al. | Aug 2018 | A1 |
20180257761 | Oldroyd | Sep 2018 | A1 |
20180265193 | Gibboney et al. | Sep 2018 | A1 |
20180273160 | Baldwin et al. | Sep 2018 | A1 |
20180327092 | Deng et al. | Nov 2018 | A1 |
20180362158 | Zhang et al. | Dec 2018 | A1 |
20190031331 | McCullough et al. | Jan 2019 | A1 |
20190031334 | McCullough et al. | Jan 2019 | A1 |
20190031335 | McCullough et al. | Jan 2019 | A1 |
20190031336 | McCullough et al. | Jan 2019 | A1 |
20190031337 | McCullough et al. | Jan 2019 | A1 |
20190031338 | McCullough et al. | Jan 2019 | A1 |
20190031339 | McCullough et al. | Jan 2019 | A1 |
20190031361 | McCullough et al. | Jan 2019 | A1 |
20190144108 | McCullough et al. | May 2019 | A1 |
20190263516 | McCullough et al. | Aug 2019 | A1 |
20190389573 | Kahou et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
105539833 | May 2016 | CN |
2977865 | Jan 2013 | FR |
587388 | Apr 1947 | GB |
618475 | Feb 1949 | GB |
654089 | Jun 1951 | GB |
2001074659 | Oct 2001 | WO |
2005039973 | May 2005 | WO |
2014067563 | May 2014 | WO |
Entry |
---|
Air Launched Unmanned Disaster Relief Delivery Vehicle, 33rd Annual AHS Student Design Competition, University of Maryland, Undated but admitted prior art. |
Bell and NASA Partner for UAV Development; Transportup.com; Sep. 9, 2018. |
Bell APT—Automatic Pod Transport; SUASNEWS.com; Dec. 6, 2017. |
Bell Autonomous Pod Transport; MONCH.com; May 2, 2018. |
Wolfe, Frank; Bell Moving to Scale Up Antonymous Delivery Drones for US Military; Rotor & Wing International; Sep. 27, 2018. |
Canadian Examination Report; OIPC; dated Dec. 24, 2021. |
Number | Date | Country | |
---|---|---|---|
20210122468 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16661740 | Oct 2019 | US |
Child | 17005704 | US |