1. Field of the Invention
The invention relates to refrigerator-freezer with an upper compartment operable as an above freezing compartment and having the refrigerating system for the upper and lower compartments located in the upper compartment. The lower compartment can occupy more or less than half of the refrigerated volume and is operable as a below freezing compartment. The upper compartment can be convertible between operating as an above freezing refrigerator compartment or a below freezing freezer compartment. The refrigerator-freezer can include controls to selectively operate the upper compartment as a refrigerator compartment or a freezer compartment.
2. Description of the Related Art
Refrigerator-freezers having a compartment that can be operated at above freezing or below freezing temperatures are known. Refrigerators having multiple temperature evaporators to selectively operate multiple refrigerator compartments at different temperatures are also known.
In one embodiment of the invention a convertible refrigerator freezer having an insulated cabinet has an upper convertible compartment selectively operable by the user as an above freezing refrigerator compartment or as a below freezing freezer compartment, and a lower below freezing freezer compartment with insulation between the upper convertible compartment and the lower freezer compartment. A refrigerating system for the convertible refrigerator freezer includes an evaporator mounted adjacent the rear wall of the upper convertible compartment; an evaporator cover forming an evaporator compartment for separating the evaporator from the upper convertible compartment; an evaporator fan mounted in the evaporator compartment for drawing air from the lower freezer compartment through the insulation between the compartments and from the upper convertible compartment and circulating the air over the evaporator; an air tower for conveying refrigerated air from the evaporator fan to the lower freezer compartment through the insulation between the compartments; and a control for selectively discharging a first amount of refrigerated air through the evaporator cover to the upper convertible compartment when the control is set for operating the upper compartment as an above freezing refrigerator compartment, or a second larger amount of refrigerated air through the evaporator cover to the convertible compartment when the control is set for operating the upper convertible compartment as a freezer compartment.
In another embodiment of the invention a refrigerator freezer including an having cabinet has an upper compartment operable as an above freezing refrigerator compartment, and a lower below freezing freezer compartment having insulation between the upper compartment and the lower freezer compartment. A refrigerating system for the refrigerator freezer includes an evaporator mounted adjacent the rear wall of the upper compartment; an evaporator cover forming an evaporator compartment for separating the evaporator from the upper compartment; an evaporator fan mounted in the evaporator compartment for drawing air from the lower freezer compartment through the insulation between the compartments and from the upper compartment and circulating the air over the evaporator; a defrost heater adjacent the evaporator for periodically defrosting the evaporator; an air tower for conveying refrigerated air from the evaporator fan to the lower freezer compartment through the insulation between the compartments and to the upper compartment; a defrost control for periodically defrosting the evaporator during defrost cycles by energizing the defrost heater; and a control for adjusting the temperature of the upper compartment including an auxiliary heater for the upper compartment and connected in circuit with an upper compartment thermostat to maintain the upper compartment above freezing.
Another aspect of the invention is a convertible refrigerator freezer having an insulated cabinet that has an upper convertible compartment selectively operable by the user as an above freezing refrigerator compartment or as below freezing freezer compartment, and a lower below freezing freezer compartment and insulation between the upper convertible compartment and the lower freezer compartment. The refrigerating system for the convertible refrigerator freezer includes an evaporator mounted adjacent the rear wall of the upper convertible compartment; an evaporator cover forming an evaporator compartment for separating the evaporator from the upper convertible compartment; an evaporator fan mounted in the evaporator compartment for drawing air from the lower freezer compartment and from the upper convertible compartment and circulating the air over the evaporator; a defrost heater adjacent the evaporator for periodically defrosting the evaporator; an air tower for conveying refrigerated air from the evaporator fan to the lower freezer compartment through the compartment separator; a defrost control for periodically defrosting the evaporator; and a control for setting the convertible compartment to operate as an above freezing refrigerator or as a below freezing freezer. The control includes an air controller for selectively discharging a first amount of refrigerated air through the evaporator cover to the upper convertible compartment when the upper convertible compartment is operated as an above freezing refrigerator compartment, or a second larger amount of refrigerated air through the evaporator cover to the convertible compartment when the upper convertible compartment is operated as a below freezing freezer compartment; and an auxiliary heater for the convertible compartment and connected in circuit with a convertible compartment thermostat to maintain the convertible compartment above freezing when the control is set for refrigerator operation.
Another aspect of the invention is a convertible refrigerator freezer having an insulated cabinet that has an upper convertible compartment selectively operable by the user as an above freezing refrigerator compartment or as a below freezing freezer compartment, a lower below freezing freezer compartment and insulation and a compartment separator between the upper convertible compartment and the lower freezer compartment. An evaporator compartment in the rear of the upper convertible compartment is formed by an evaporator cover assembly spaced from the rear wall of the upper convertible compartment that includes an inner evaporator cover spaced inwardly from the rear wall of the convertible compartment; an air tower overlying the inner evaporator cover and connecting an opening in the inner evaporator cover to an opening in the compartment separator for supplying refrigerated air from the evaporator compartment to the freezer compartment; a sheet of insulation material overlying the inner evaporator cover and the air tower; an outer evaporator cover overlying the insulation material. The refrigerating system for the convertible refrigerator freezer includes an evaporator mounted in the evaporator compartment; an evaporator fan mounted in the evaporator compartment for drawing air from the lower freezer compartment through the compartment separator and from the upper convertible compartment and circulating the air over the evaporator and discharging refrigerated air into the air tower for cooling the freezer compartment and the convertible compartment. The refrigerator freezer includes a control for selectively discharging a first amount of refrigerated air from the air tower through the evaporator cover to the upper convertible compartment when the control is set to operate the convertible compartment as an above freezing refrigerator compartment, and for discharging a second larger amount of refrigerated air through the evaporator cover to the convertible compartment when the control is set to operate the convertible compartment as a below freezing freezer compartment.
Another aspect of the invention is a method of manufacturing (i) a refrigerator freezer product having an upper freezer compartment and a lower refrigerator compartment configuration, or (ii) a convertible refrigerator freezer product having an upper convertible compartment selectively operable as an above freezing refrigerator compartment or as a freezer compartment and a lower freezer compartment configuration utilizing a common platform. The method includes providing a common cabinet for use with both product configurations;
providing common compartment liners for use with both product configurations; providing a first compartment separator for use in the refrigerator freezer product configuration or a second compartment separator for use in the convertible refrigerator freezer product configuration; providing a first air system for supplying refrigerated air from an evaporator and evaporator fan in the upper freezer compartment to the upper freezer compartment and lower refrigerated compartment in the refrigerator freezer product configuration including an air tower for directing refrigerated air from the evaporator to the lower refrigerated compartment and to the upper freezer compartment, or providing a second air system for supplying refrigerated air from an evaporator and evaporator fan in the upper convertible compartment to the upper convertible compartment and to the lower freezer compartment in the convertible refrigerator freezer product configuration including an air tower for directing refrigerated air from the evaporator fan to the lower freezer compartment and a control for selectively directing a first amount of refrigerated air from the evaporator fan to the upper convertible compartment when the convertible upper compartment is operated as an above freezing refrigerator compartment, and a second larger amount of refrigerated air to the convertible compartment when the upper convertible compartment is operated as a freezer compartment.
Another aspect of the invention is a method of manufacturing (i) a refrigerator freezer product having an upper freezer compartment and a lower refrigerator compartment configuration, or (ii) a convertible refrigerator freezer product having an upper convertible compartment selectively operable as an above freezing refrigerator compartment or as a freezer compartment and a lower freezer compartment configuration utilizing a common platform and a common assembly process. The method includes fabricating a common cabinet for use with both product configurations; fabricating a common upper compartment liner and a common lower compartment liner for use in both product configurations; assembling a first compartment separator to the upper compartment liner for the refrigerator freezer product configuration, or assembling a second compartment separator to the upper compartment liner for the convertible refrigerator freezer product configuration; assembling a wiring harness in the common cabinet for connecting electrical components in the upper and lower compartment liners; assembling a first refrigerant line and heat loop set in the common cabinet for the refrigerator freezer product configuration, or assembling a second refrigerant line and heat loop set in the common cabinet for the convertible refrigerator freezer product configuration; assembling the upper compartment liner to the cabinet; assembling the lower compartment liner to the cabinet; providing foam in place insulation between the cabinet and the liners. Following foam in place insulation the method includes assembling a first refrigeration system including an evaporator, defrost heater, condenser and compressor in the refrigerator freezer product configuration, or a second refrigeration system including an evaporator, defrost heater, condenser and compressor in the convertible refrigerator freezer product configuration; assembling a first evaporator cover including an air tower for transmitting refrigerated air to the lower refrigerator compartment and to the upper freezer compartment in the refrigerator freezer product configuration, or a second evaporator cover assembly including an inner evaporator cover, an air tower for transmitting refrigerated air from the evaporator fan to the lower freezer compartment, a sheet of insulation material and an outer evaporator cover in the convertible refrigerator freezer product configuration; and assembling a first control for controlling operation of a refrigerator freezer product configuration, or a second control for controlling operation of a convertible product configuration wherein the second control includes an air controller for selectively directing a first amount of refrigerated air from the evaporator fan to the upper convertible compartment for operation as a refrigerator, or a second larger amount of refrigerated air to the convertible compartment for operation as a freezer. Following completion of the refrigeration system and control the method includes assembling a common lower compartment door and door liner and assembling a common upper door having a first inner door for the refrigerator freezer product configuration, or a common upper door having a second inner door for the convertible refrigerator freezer product configuration.
In accordance with the present invention a refrigerator freezer product is provided with a lower compartment that is a freezer compartment. The upper compartment can be a fresh food, above freezing, compartment or can be convertible by the user between an above freezing fresh food compartment and a below freezing freezer compartment. A refrigerator freezer according to the invention can serve a function similar to a vertical freezer. But, unlike existing vertical freezers, the convertible refrigerator freezer has a separate upper compartment that can be easily converted by the user to above freezing fresh food storage. This product configuration gives the consumer the flexibility to obtain extra fresh food storage for example in the summer to keep extra drinks or extra fresh food from the kitchen refrigerator cold. In the winter or after shopping at a wholesale club the upper compartment can easily be converted to a freezer compartment for extra frozen food storage. The refrigerator freezer according to the invention is also capable of operation in locations that are not climate controlled such as a basement or garage and yet maintain satisfactory fresh food compartment temperatures when the ambient temperature around the refrigerator freezer is near or below freezing. The convertible refrigerator freezer according to this invention can be provided with doors having an ornamental treadplate pattern on the outer surface of the doors that is the subject matter of co-pending design patent application US20020317 filed on Dec. 30, 2002.
Turning to
According to one embodiment of the invention, lower compartment 12 is a freezer compartment arranged to provide below freezing temperatures for storing frozen food. Upper compartment 13 can be converted by the user to operate as a fresh food compartment, with above freezing temperatures, or as an additional, below freezing, freezer compartment. Referring to
The evaporator cover assembly can include a control 30 mounted on the outer surface of an outer evaporator cover 21. Evaporator cover 21 can be formed of pre-painted galvanized steel. An upper compartment drain pan 22 can be positioned at the bottom of outer evaporator cover 21 and against the bottom surface of the upper compartment liner 17. Upper compartment drain pan 22 can be formed of HIPS. An auxiliary heater 23 can be provided for the upper compartment. Auxiliary heater 23 can be formed by laminating an electric heater wire 24 between sheets of aluminum foil. One of the sheets of aluminum foil can have adhesive on one surface to hold heater wire 24 in position during the lamination process. Auxiliary heater 23 can have adhesive on one surface to adhere auxiliary heater 23 to the inside surface of outer evaporator cover 21. Alternately, auxiliary heater 23 could be adhered to insulation panel 25 or could be sandwiched between outer evaporator cover 21 and insulation panel 25, or could otherwise be located in the upper compartment as will be readily understood by one skilled in the art. In the embodiment of FIG. 1–
Referring to
An evaporator fan assembly 54 can be mounted above evaporator 50 for moving air through the air system. Evaporator fan assembly 54 can be mounted to the rear wall of upper compartment liner 17 as is well known to those skilled in the art. Evaporator fan assembly 54 can draw air up through evaporator 50 and discharge the refrigerated air into the air system formed by the evaporator cover assembly 20 and fan tower 26. Fan tower 26 can direct refrigerated air downward into lower compartment 12 through compartment separator 18 through air passage 48. Fan tower 26 can have an air passage 28 that can allow refrigerated air to move forward through fan tower and insulation panel 25 into control 30 as will be described in more detail below. Evaporator fan assembly 54 can draw air into evaporator compartment 19 through return air passages 29 in upper compartment drain pan 22 from upper compartment 13 and through return air passages 49 in compartment separator 18 from lower compartment 12.
Suitable refrigerant lines (not shown) and wiring harnesses (not shown) can be provided to connect refrigeration system and electrical components in upper compartment 13 and lower compartment 12 with refrigeration system and electrical components located in the machinery compartment 8 in the bottom rear of the cabinet as is well known to those skilled in the art. An optional ice maker fill tube assembly 66 can be provided in the rear wall of upper compartment liner 17 that can pass through openings in the inner evaporator cover 27, insulation panel 25, and outer evaporator cover 21. A cover 66′ can be provided to close the opening in outer evaporator cover 21 until an ice maker is installed as is well known to those skilled in the art.
Referring to
Referring again to
Control baffle 33 can also carry a curved upstanding cam 40 on the inside surface of the control baffle. Cam 40 can be positioned on control baffle 33 so that as control baffle 33 is rotated by control knob 43, cam 40 can be rotated into position where cam 40 engages the rocker arm 41 of switch 34 to actuate switch 34. The function of switch 34 will be described below. Control baffle 33 can also include a drive shaft 42 arranged to engage upper compartment thermostat 36 to allow adjustment of the temperature at which thermostat 36 operates. Thus, control baffle 33 can provide three functions, an air controller to control air flow through louvers 37, a switch operator to operate switch 34 and a thermostat adjuster to adjust thermostat 36 in order to control operation of upper compartment 13 as a fresh food compartment or a freezer compartment.
Referring to
Control switch 34, upper compartment thermostat 36 and auxiliary heater 23 can also be connected in a circuit between line voltage and neutral. Control switch 34 has a normally closed (N/C) terminal and a normally open (N/O) terminal. As mentioned above, control knob 43 can be arranged to operate control switch 34 by means of cam 40 on the back side of control baffle 33. Conventional lights 63 and 65 and light switches 62 and 64 for the upper and lower compartment can be connected between line voltage and neutral as is well known to those skilled in the art.
Referring to
When control knob 43 is rotated to a freezer setting position, block 70 and 70′, control knob 43 rotates control baffle 33 to position cam 40 so that switch 34 reverts to the N/C position, block 75 and block 75′, and positions cutout 39 to be partially or fully aligned with air passage 47 and louvers 37 thus increasing refrigerated airflow into upper compartment 13, block 76. Upper compartment thermostat 36 is adjusted to assure thermostat 36 will remain closed to connect the N/C terminal of switch 34 to the auxiliary heater 23, block 77. With control switch 34 in the N/C position auxiliary heater 23 is normally de-energized so that no additional heat is added to upper compartment 13, block 78. Thus, the temperature in upper compartment 13 will fall to substantially the same below freezing temperature as in lower compartment 12 under control of lower compartment thermostat 57, blocks 79 and 79′. When automatic defrost control 59 initiates a defrost cycle with upper compartment 13 operating as a freezer, block 80, defrost heater 56 is energized through defrost bi-metal 55. As is well known to those skilled in the art, a defrost bi-metal thermostat can be located in evaporator compartment 19 in a position to sense the temperature at which frost has been removed from evaporator 50. Referring to
A benefit of locating the evaporator 50 in upper compartment 13 is that frozen food stored in lower compartment 12 is not subject to above freezing temperatures as can occur in upper compartment 13 during a defrost cycle in conventional top freezer refrigerator freezers, or in conventional upright frostless freezers. While defrost cycles in conventional refrigerator freezers or conventional upright freezers do not cause frozen food stored in the freezer to defrost, the surface of some packages of food can rise to near or above freezing temperatures during defrost cycles that can impair the overall satisfactory storage life of such food products. Since lower compartment 12 is the primary frozen food storage compartment, improved frozen food storage can be achieved in lower compartment 12. When upper compartment 13 is operated as a refrigerator compartment the heat resulting from a defrost cycle does not impair fresh food stored in upper compartment 13 since temperatures do not increase enough to impair storage life of the above freezing refrigerated items. When upper compartment 13 is operated as a freezer compartment food stored in the upper compartment can be subjected to above freezing temperatures during defrost cycles. However, upper compartment 13 is intended as auxiliary, not long term frozen food storage so any impairment in satisfactory storage will be inconsequential.
Referring to
In order to improve operation of the convertible refrigerator freezer when it is installed in potential low ambient temperature conditions such as in a garage or other non-climate controlled location, the compressor 61 can be provided with means to facilitate starting in low ambient temperature conditions as is well known to those skilled in the art. A crankcase heater and thermostat (not shown), or a suction line accumulator (not shown) can be used to facilitate operation in low ambient temperature conditions by protecting the compressor from liquid refrigerant return during operation in low temperature ambient conditions.
The convertible upper compartment can be provided with additional low ambient heaters to help assure that temperatures in the upper compartment remain above freezing when the convertible refrigerator freezer is set for refrigerator operation and is operating in low ambient temperature conditions, such as in a garage or other non-climate controlled location. The upper compartment liner 17′, shown in
As shown in
Referring to
When control knob 43 is rotated to a freezer setting position, block 70 and 70′, control knob 43 rotates control baffle 33 to position cam 40 so that switch 34 reverts to the N/C position, block 75 and block 75′, and positions cutout 39 to be partially or fully aligned with air passage 47 and louvers 37 thus increasing refrigerated airflow into upper compartment 13, block 76 to achieve typical freezer temperatures, block 79 and block 79′. Upper compartment thermostat 36 is adjusted to assure thermostat 36 will remain closed to connect the N/C terminal of switch 34 to the auxiliary heater 23, block 77. With control switch 34 in the N/C position auxiliary heater 23 and low ambient heater(s) 23′ are normally de-energized so that no additional heat is added to upper compartment 13, block 78 and block 83. Low ambient heaters 23′ are energized during defrost as is the case with the auxiliary heater 23 if ambient temperatures are low enough to close low ambient thermostat 67, block 80 and block 81. Those skilled in the art will understand that the embodiments of the refrigerator freezer control described above and shown in
An advantage of the convertible compartment refrigerator according to the invention is that the major components are common with a conventional top freezer refrigerator freezer. By sharing major components the tooling and capital cost of producing a convertible compartment refrigerator can be greatly reduced. Further, since major components are common, conventional top freezer and convertible refrigerator freezers can be produced on the same assembly line without undue complication. Referring to
Following assembly and foaming of the cabinet and liners, the remaining refrigeration system and control components can be assembled. To assemble a convertible refrigerator freezer the evaporator 50 and mounting bracket 51 can be installed. After a compressor (not shown), a condenser (not shown) and an expansion device (not shown) are installed in the machinery compartment 8, the refrigeration system can be connected to the refrigerant line set and heat loop (not shown) assembled to the cabinet prior to application of foam in place insulation and the system can be evacuated and charged with refrigerant as is well known in the art. After completion of the refrigerant circuit, evaporator fan assembly 54 can be connected and installed in the rear of upper compartment 13. Then, evaporator cover assembly 20 can be installed. To install evaporator cover assembly 20, inner evaporator cover 27 can be installed followed by air tower 26. Next, insulation block 25 can be positioned over air tower 26. Evaporator cover 21 can be installed with auxiliary heater 23 attached followed by upper compartment drain pan 22. Last, control 30 or 30′ can be connected and installed on the face of outer evaporator cover 21. Alternately, the evaporator cover assembly 20 could be assembled as a subassembly and installed in upper compartment in one piece as will be understood by those skilled in the art. Following completion of installation of the outer evaporator cover assembly remaining interior components can be completed and doors 14 and 15 can be installed as is well known to those skilled in the art.
Referring to
Thus, the convertible refrigerator freezer according to the invention can be cost effectively produced since all major structural components are common with a conventional top freezer refrigerator. Only the compartment separator 18, 18″, low ambient heaters if used, and refrigeration system components differ between the conventional and convertible refrigerator freezers outside the evaporator cover assembly. In addition, the convertible refrigerator freezer and the “always refrigerator” upper compartment embodiments according to this invention provide superior freezer performance in the lower freezer compartment due to the location of the evaporator and defrost heater in the upper compartment. Further, the convertible refrigerator freezer and “always refrigerator” upper compartment embodiments enable use of the refrigerator freezer according to the invention in low ambient temperature conditions without subjecting fresh food stored in upper compartment 13 set to operate as an above freezing refrigerator compartment to below freezing conditions.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
This application claims the benefit of Provisional application 60/437,120, filed Dec. 30, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3411312 | Sigl et al. | Nov 1968 | A |
3590594 | Arend | Jul 1971 | A |
3590911 | Horvay | Jul 1971 | A |
3601463 | Watt | Aug 1971 | A |
4033739 | Ballarin | Jul 1977 | A |
4467618 | Gidseg | Aug 1984 | A |
4614092 | Kim et al. | Sep 1986 | A |
4638644 | Gidseg | Jan 1987 | A |
4642998 | Kang et al. | Feb 1987 | A |
4689966 | Nonaka | Sep 1987 | A |
5375428 | LeClear et al. | Dec 1994 | A |
5377498 | Cur et al. | Jan 1995 | A |
5758512 | Peterson et al. | Jun 1998 | A |
5839287 | Stormo | Nov 1998 | A |
5899083 | Peterson et al. | May 1999 | A |
6637235 | Sakamoto et al. | Oct 2003 | B1 |
20030024254 | Yoshida et al. | Feb 2003 | A1 |
20040261444 | Chastine | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040144128 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60437120 | Dec 2002 | US |