This invention relates to vehicles that can travel on both land and on a railroad and to a kit for converting a land vehicle so that the vehicle can travel both on land and on a railroad.
For many years railroads have employed small vehicles for inspecting railroad tracks and for transporting maintenance crews to locations on railroad tracks where repair and/or maintenance is needed. Since only a few persons, a section crew, are required to perform many small maintenance tasks and inspections, small rail vehicles carrying a few persons to remote locations are needed. In most locations only a single railroad track is available so that, ideally, the vehicle transporting the section crew can be easily removed from railroad tracks at the site of maintenance to allow trains to pass. Likewise, the vehicle should be easily replaced on the tracks for return of the section crew or inspectors to a central location. Further, it is particularly desirable to enter a rail system at locations remote from central railroad yards. Many remote locations are most easily accessed by traveling on a highway to an intersection with railroad tracks, i.e., at a grade crossing. At the grade crossing the rail vehicle may be placed on the tracks for movement to the location of inspection and/or maintenance.
Historically, a vehicle referred to as a section car has been used to transport section crews. These vehicles are self-propelled vehicles that can travel only on railroad tracks. These section cars must be moved to a siding during maintenance to allow a train to pass or must be completely removed from the track. Various hydraulic devices have been used to assist crews in removing and replacing section cars on tracks, a very time consuming and inefficient process. Further, the hydraulic devices increase cost of the cars and their maintenance. Some section cars can be removed and replaced on rails manually, but this task requires substantial effort by the crew and puts the crew at risk of injury.
In recent years, conventional highway vehicles, such as pickup trucks and utility trucks, have been modified to travel both on rails, using rails wheels, and on highways using the conventional rubber tires of the vehicles. Special rail wheels are fitted to the front and rear of such vehicles. In general, the rail wheels simply ensure that the vehicle remains on the rails. The vehicle propulsion is provided through the rubber tires. The rubber tires may contact the rails or the rail wheels. In these vehicles, it is typically necessary to employ special wheels, altering the distance between tires mounted on an axle of the vehicle. Therefore, a distance that corresponds to the rail gauge, i.e., the separation between the rails, must separate the rubber tires. In other vehicles altered to travel on both highways and on rails, the propulsion system of the vehicle may have to be modified to drive the rail wheels. The modifications are relatively expensive. These vehicles employing both rubber tires and rail wheels can be placed on rails at grade crossings. However, substantial time is required to transfer the vehicle to rails since the vehicle must be turned perpendicular to the passage of vehicles on the intersecting highway. In addition, once these vehicles are at a location remote from a grade crossing, it is difficult, if not impossible, to remove the vehicle from the rails to allow a train to pass. This difficulty in keeping the track clear interferes with rail traffic, causing substantial inefficiency in railroad operations.
Numerous manufacturers make commercially available relatively small four-wheel rubber-tired vehicles, referred to as utility vehicles or all-terrain vehicles (ATV). While utility vehicles and ATVs have some significant differences, these vehicles all have four wheels, rubber tires, and are self-propelled, for example by an internal combustion engine. Because of these similarities, these vehicles are considered to be the same for the purposes of the following description. Manufacturers of such vehicles include John Deere, Honda, and Kawasaki. Many of these vehicles are intended for off-road use, i.e., traveling across open land. The off-road vehicles can, however, travel on public roads if properly licensed. The separation between the rubber tires on the front axle and on the rear axle of these utility vehicles and ATVs is narrower than most rail gauges. The vehicles are relatively lightweight, inexpensive, and readily obtained. Many of the vehicles can transport two or more persons as well as some cargo. Since these vehicles can readily travel across open land and are self-propelled, they are potentially useful in inspection of railroad track and in transporting inspectors and section crews to remote railroad track locations. However, the vehicles cannot be used directly in a railroad system.
It is known from U.S. Pat. No. 4,744,324 that ATVs can be adapted to uses other than land travel by altering the conventional rubber tires that are supplied with the vehicle. According to this patent, an ATV can be converted to an amphibious vehicle by replacing the conventional tires with balloon tires that function as floatation devices. In addition, each of the driven rear wheels of the ATV can have attached to it an additional floatation tire with paddles mounted on an axle extension between the pairs of rear wheels. Thus, when the rear wheels are driven, the paddles propel the modified ATV through a body of water.
U.S. Pat. Nos. 2,010,617 and 2,657,947 both show arrangements in which a rail wheel is combined with a rubber tire of a vehicle so that the vehicle may travel on both a highway and a railway. In both structures, the rubber tire is attached directly against the rail wheel and the rubber tire has a larger outside diameter than the rail wheel. In U.S. Pat. No. 2,010,617, the rubber tires are placed outwardly with respect to the rails. In U.S. Pat. No. 2,657,947, the rail wheels are located outwardly with respect to the rubber tires. Thus, the rubber tires are located between the two rails when the vehicle including this wheel structure is traveling on a railway. In both the structures described in the two patents, the spacing between the rubber tires mounted on a common axle must conform to the rail gauge. Therefore, adjusting vehicles with these wheel structures to different rail gauges is extremely complicated. Accordingly, each vehicle not originally manufactured for railway use and employing these two kinds of wheels requires special and expensive modification.
As shown by the prior art, there is clearly a need for a lightweight and inexpensive vehicle that can travel on both railways and land, and that can be easily removed from and replaced on a railway, even at locations remote from a grade crossing.
It is further desirable that such a vehicle can be readily modified for use with railways of different gauges and, if necessary, between land and rail use.
In meeting these needs, the invention provides a four-wheel self-propelled vehicle with vehicle wheels and rubber tires for traveling on land or a road and with rail wheels detachably mounted to, spaced from, and located outwardly of each of the vehicle wheels and having a gauge matching the gauge of a railway upon which the vehicle may travel.
The lightweight vehicle is readily placed on and removed from a railroad either at a grade crossing or at a location remote from a grade crossing.
In further meeting the need, the invention provides a kit for modifying a commercially available rubber-tired four-wheel vehicle. The kit provides a coupling assembly including a vehicle wheel adapter for mounting on the hubs of the vehicle that carry the wheels with rubber tires, and a rail wheel adapter for mounting on a rail wheel. The coupling assembly provides for coupling of the rail wheel and the vehicle wheel adapter, extending from the hub to a rail wheel. By providing a coupling arrangement of adjustable length, the vehicle including the rail wheels can easily be adjusted to operate on railroads having different rail gauges.
According to one aspect of the invention, a self-propelled four-wheel vehicle for travel on land and on rails comprises four hubs for mounting of respective wheels including tires for travel of the vehicle on land, four rail wheels for traveling of the vehicle on rails of a railway, and four coupling assemblies, each coupling assembly respectively detachably connecting one of the rail wheels to, outwardly of, and spaced from, the corresponding hub.
A kit for detachably mounting rail wheels on hubs of a land vehicle for converting the land vehicle for travel on rails comprises a rail wheel adapter including a flange for fastening to a rail wheel and an axle portion extending transverse to the flange, a vehicle wheel adapter including a flange for fastening to a hub of a land vehicle and an axle portion extending transverse to the flange, and coupling means for coupling the axle portion of the rail wheel adapter to the axle portion of the vehicle wheel adapter.
In all figures, like elements are given the same reference numbers.
In the illustrated embodiment, the tires 6 have a larger outside diameter than the rail wheels 7. Therefore, the vehicle can travel over land that is relatively smooth or a road with both the rail wheels 7 and the tires 6 attached to the vehicle. When the vehicle is traveling on rails, care must be exercised at grade crossings when the rail wheels 7 may be lifted from the rails by contact of the tires 6 with the road at the grade crossing. Likewise, switches or other railway appliances between rails may be contacted by the tires 6, and may lift the vehicle and the rail wheels 7 may move out of contact with the rails. When the vehicle is used on rails and is at a location remote from a grade crossing, this relationship between the size of the tires and the rail wheels may be exploited in easily removing the vehicle from the rails. For example, ramps may be placed between the rails so that the tires climb the ramps, lifting and disengaging the rail wheels from the rails, thereby facilitating removal of the vehicle from the rails. The same ramps can be employed in reverse, in returning the vehicle to the rails at a remote location. At a grade crossing, the vehicle can be easily placed on wheels simply by aligning the rail wheels with the rails and driving off the end of the grade crossing at the level of the intersecting road. The vehicle is derailed at a grade crossing in exactly the reverse procedure. Further, if the vehicle should derail, the tires provide support to the vehicle so it does not plunge between the rails and function as a guardrail to prevent the vehicle from leaving the rail roadbed while the vehicle is brought to a stop. The vehicle's sideward motion is limited because the rail is between the tire and the rail wheel.
It is apparent from
A more detailed view of the coupling assembly shown in the partial detail view of
At the opposite end of the axle extension tube 12, a shaft 24, as an axle portion, protruding from a rail wheel adapter 25 is received within the axle extension tube. The shaft 24 is fixed within the axle extension tube with a bolt 13 and a nut 23, for example, passing through alignable holes within the axle extension tube and the shaft 24 of the rail wheel adapter 25. These holes are transverse to the axis of rotation of the wheel 4. The rail wheel adapter 25 includes a flange 26 transverse to the shaft 24. The flange 26 has a number of peripherally located holes that align with corresponding holes in the rail wheel 7. The aligned holes receive fasteners, such as bolts 27 and nuts 28 securing the rail wheel 7 to the rail wheel adapter 25.
The spacing between a pair of rail wheels 7 mounted on a front or rear axle of the vehicle 1 have a separation that depends upon the spacing between the vehicle wheels and the length of the coupling assembly, i.e., the lengths of the adapters 10 and 25 and of the axle extension tube 12 interposed between and coupling the adapters. Thus, the lengths of these articles are chosen so that the width between the mounted rail wheels 7 matches the gauge of a railway on which the vehicle is to be used. When the vehicle will be used on a single gauge railway, then it is desirable that, for the illustrated embodiment, that a single length central coupler, i.e., axle extension tube 12, be employed. However, by supplying multiple sets of axle extension tubes 12 of different lengths, vehicles suitable for use on different gauge railways can easily be assembled.
In order to convert a vehicle from land use only to use both on land and on a railway, it is only necessary to supply a kit of coupling assemblies to provide the connection between railway wheels 7 and hubs 9 of the land vehicle. In other words, a coupling assembly kit including a vehicle wheel adapter, a rail wheel adapter, an axle extension tube, a rail wheel, if needed, and fasteners for connecting these elements is all that is required to adapt each wheel of the vehicle for rail use. Although the fasteners illustrated in
In the embodiment described with respect to
When the vehicle including the rail wheels is operating on rails, there is no necessity of steering the vehicle with the handlebars 3 or whatever other steering device is provided. In fact, it is desirable, in order to avoid unintended derailing, to lock the steering device so that the steered wheels of the vehicle follow the path of the rails. The locking mechanism can be quite simple and include a strap connected between the body of the vehicle and the handlebars 3 or another steering control. Alternatively, a hinged fork can be attached to the body of the vehicle and merely pivoted into place, over the handlebars 3, or through another kind of steering device, such as a steering wheel, to prevent undue movement of the steering device. Further, one or more pins may be inserted into holes in a plate attached to a steering column and engaging or passing through a steering device, such as the handlebars 3, to lock the steering mechanism in place against turning by other than the rails on which the vehicle is traveling.
Although the illustrated vehicle includes tires that are larger in diameter than the rail wheels, the invention may encompass a vehicle in which the rail wheels are larger in diameter than the tires. In that event, the vehicle must be raised, for example by driving the vehicle up ramps, so that the rail wheels can be installed. Moreover, the rail wheels have to be removed before the vehicle is suitable for operating on a road or over land. While the attachment and removal of the rail wheels can be relatively simple, since the vehicle wheel adapters can remain in place even after the rail wheels have been removed, it is still preferred that the tires of the vehicle be larger in diameter than the rail wheels for travel on land.
In the embodiment of
The embodiments of the invention described above all work satisfactorily in achieving their purpose. However, in the previously described embodiments, the hubs 9 are in electrical contact with the attached rail wheel 7. In a vehicle in which the wheels on a front or rear axle assembly are in electrical communication, the attached rail wheels according to the invention will be in electrical communication. In many railways, an approaching rail car at a grade crossing, triggering warning signals and/or gates for road traffic, is detected by sensing establishment of an electrically conducting path between the rails. In other words, an approaching train establishes an electrical current between the rails. The flow of the current triggers the signals and/or gates at the grade crossing. It is not desirable or necessary for a vehicle according to the invention to trigger these signals since the vehicle, unlike a train, can slow down near a grade crossing and stop relatively quickly to wait for road traffic to clear.
To avoid triggering traffic signals, it is necessary to electrically insulate the rail wheels 7 from the hubs 9. An assembly achieving that result is illustrated in
Another electrical insulation arrangement is illustrated in
The invention provides significant advantages over the prior art. Since the coupling assemblies include at least two principal members, the vehicle wheel adapter and the rail wheel adapter, the vehicle wheel adapter can be left in place, permanently, after the rail wheel and the rail wheel adapter are removed. Then, the rail wheel and the rail wheel adapter can be added and removed, as needed, quickly. Moreover, the way in which the two adapters couple to each other makes the conversion simple and easily accomplished by only one person.
The invention has been described with respect to certain preferred embodiments. However, the scope of the invention is determined solely by the following claims and encompasses not only the structures illustrated but also all modifications and additions within the spirit of the invention and equivalents thereof.
This application claims the benefit of U.S. Patent Application 60/382,566, filed May 24, 2002, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/04990 | 2/20/2003 | WO | 11/2/2004 |
Number | Date | Country | |
---|---|---|---|
60382566 | May 2002 | US |