Priority to German patent application no. 10 2006 006 673.1 filed Feb. 14, 2006 is claimed, the contents of which are incorporated herein by reference in its entirety.
The invention concerns a convertible top for a convertible automobile that includes a rotational angle detection device for at least one rotary hinge (pivot point) in the linkage/frame assembly of the folding convertible top.
U.S. Pat. No. 5,225,747 describes a rotational angle detection device that measures the momentary angular position of a rotary hinge and supplies the measured data to a control unit. The rotational angle is detected by a potentiometer that is affixed substantially laterally adjacent to the rotary hinge in a sealed housing. By arranging the potentiometer coaxial to the rotational axis, the connection of the linkage arms is possible only with increased complexity due to the coaxial shaft of the potentiometer. By laterally arranging the potentiometer adjacent to the rotary hinge, additional installation space is required, whereby the design possibilities for arranging the movable parts of the convertible top mechanism are restricted.
It is an object of the present invention to provide a folding convertible top having at least one simple-to-construct rotational angle detection device that requires minimal space.
In one aspect of the present teachings, the rotational angle detection device is arranged and constructed to detect the rotational angle between linkage or frame arms of a convertible top. The linkage or frame arms are connected with each other and are pivotable about a rotational axis, thereby forming a rotary hinge. Such rotary hinges may also be referred to as pivot joints and/or swivel joints/hinges.
A rotational angle encoder is preferably connected with one linkage arm so as to rotate therewith and a sensor element is preferably connected with the other linkage arm so as to rotate therewith. Further, the rotational angle encoder and the sensor element are preferably disposed adjacent to the rotational axis and on or proximal to inner surfaces of the linkage arms that face towards each other. These inner surfaces optionally may be a part of the rotary hinge.
In addition or in the alternative, the rotary hinge may comprise a first housing part rotatably or pivotably coupled to a second housing part. The first and second housing parts are preferably coupled to the first and second linkage arms, respectively, so as to rotate therewith. For example, the first and second housing parts may be attached to end portions of the respective linkage arms. In addition, the rotational angle encoder may be disposed within the first or second housing part and the sensor element may be disposed in the other housing part. In such an embodiment, the rotational angle encoder and/or the sensor element are advantageously protected from damage and contamination while also minimizing overall space requirements for the rotational angle detection device.
Alternatively, the rotational angle encoder and/or the sensor element may be accommodated in a recess of the surfaces facing towards each other.
In addition or in the alternative, a bearing bush may be disposed about a bearing pin that forms the rotational axis of the rotary hinge. The bearing bush may penetrate or extend through one of the two linkage arms. In this case, the shaft length of the bearing pin preferably substantially corresponds at least to the thickness of the portion of the linkage arm that surrounds the bearing pin.
In another aspect of the present teachings, a spacer washer may be disposed between the linkage arms. In such an embodiment, the thickness of the spacer washer is preferably at least as thick as the height required by the rotational angle encoder and/or the sensor element between the two facing surfaces of the linkage arms or the rotary hinge.
In another aspect of the present teachings, the linkage arms may be pivotably or rotatably connected to each other by a rivet, a screw, a bolt or another such fastening means that permits the linkage arms or rotary hinge parts to rotate relative to each other.
In another aspect of the present teachings, the rotational angle may be detected either by contact between the rotational angle encoder and the sensor element or by a contact-less arrangement.
In another aspect of the present teachings, the rotational angle encoder and/or the sensor element are accommodated in a housing part attached to the end portion of at least one of the linkage arms, which housing part may optionally form a part of the rotary hinge.
In general, the present teachings provide a simple, inexpensive and reliable possibility for ascertaining the relative rotational or angular position of linkage arms, e.g. of a folding convertible top, wherein the installation space required by the device is small and the connection of the linkage arms, which form a rotary hinge, is realizable in a simple manner.
In the following, the invention will be described in an exemplary manner with the assistance of schematic figures of representative linkage or frame assemblies of a folding convertible top for a convertible vehicle, in which:
In the following description, three preferred embodiments of a rotary hinge 1 constructed from and pivotably connecting two linkage arms 2 and 4 will be described in an exemplary manner. The invention is limited neither to the number of linkage arms nor to detailed embodiments described herein. Furthermore, the invention is not limited to rotary hinges for folding convertible tops, as the present invention will find application in a variety of fields for which determination of the rotational angle of a rotary hinge is desirable.
It is expressly noted that each of the additional features and teachings disclosed above and below may be utilized separately or in conjunction with other features and teachings to provide improved convertible tops and rotational angle detection devices and methods for designing and using such convertible tops and rotational angle detection devices.
Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in conjunction, will now be described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Moreover, combinations of features and steps disclosed in the following detail description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention.
Further, various features of the representative examples and the dependent claims may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings. All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
In a first representative embodiment of the present teachings, the rotary hinge 1 illustrated in
Representative film potentiometers 6 suitable for use with the present teachings are sold by Altmann GmbH of Herford, Germany under “AFP-Folienpotentiometer,” e.g., “AFP-R.”
A pressure- and/or mounted point 8, which is elastically biased and in contact with the film potentiometer 6, is accommodated in the linkage arm 2 parallel to the rotational axis A of the rotary hinge 1; the mounted point 8 deforms the support surface of the film potentiometer 6 that is facing the linkage arm 2 and thus effects a conductive contact within the film potentiometer 6. The position of the thus-produced contact on the film potentiometer 6 depends upon the angular position of the linkage arms 2 and 4, so that the rotational position of the linkage arms 2 and 4 relative to each other can be ascertained from the resistance of the film potentiometer 6. The mounted point 8 thus forms a rotational angle encoder 8, whose relative position to the film potentiometer 6 can be continuously monitored by a control unit (not illustrated) connected to the three wire conductive path 16 in the illustrated example. The measurement range preferably amounts to, for example, approximately 360°.
The rotary hinge 1 is held together, e.g., by means of a rivet 10 that forms a bearing pin of the rotary hinge 1. The clearance necessary for accommodating the film potentiometer 6 between the two linkage arms 2 and 4 is adjusted or set by a spacer washer 12 and a bearing bush 14, so that the two linkage arms 2 and 4 can move relative to each other substantially free of play. In this connection, the height in the rotational axis direction of the spacer washer 12 is selected so that it corresponds at least to the amount by which the film potentiometer 6 projects above the surface of the linkage arm 4 that faces the linkage arm 2. The axial length of the bearing bush 14, which ends in a flange projecting above the linkage arm 2 and is supported on the spacer washer 12, is preferably slightly longer than the thickness of the linkage arm 2.
The spacer washer 12, whose radially-directed surfaces are advantageously coated with a lubricant, can be designed as one-piece with the bearing bush 14.
In order to make the potentiometer 6 easily exchangeable or removable in case it is necessary to repair or replace the potentiometer 6, a screw 22 can also be provided instead of the rivet 10. In this case, the linkage part 4 preferably includes a corresponding thread for receiving the screw 22 (see
The described rotational angle detection device can be integrated as a whole into the rotary hinge 1 in a simple way, wherein the conductive path 16 merely leads to the exterior for connection to a controller, microprocessor, signal evaluation unit, etc.
According the embodiment of
The linkage arm 2 is held between the collar of the bearing bush 14 and the head of the rivet 10. Tilting forces are also absorbed by this arrangement.
The mounted point 8 can be accommodated in its own assembly, e.g. in a sleeve or bushing, that is installed in, e.g., screwed into, the linkage arm 2.
With the embodiments according to
In addition, representative embodiments of the rotary hinge according to the present teachings can operate with contact-less systems, such as e.g., with inductive, magnetic or optical rotational angle sensors. In the following, two preferred embodiments with contact-less rotational angle sensors will be described, wherein one operates with an inductive system and the other operates with a magnetic system constructed based upon the Hall effect.
In
The rotational angle encoder 18 and the sensor element 20 are each preferably embedded or disposed in a housing part 24, 26, respectively, so that they are protected from contamination and damage. In addition, the housing parts 24, 26 can be designed so as to shield exterior noise from the rotational angle encoder 18 and the sensor element 20. Moreover, the encoder 18 and the sensor element 20 are preferably held at an optimal axial separation.
The housing parts 24 and 26 can be attached to the ends of the linkage arms 2 and 4 in a simple manner and thus form the respective slide (contact) surfaces 28 of the rotary hinge 1.
Furthermore, the housing parts 24 and 26 are preferably designed such that the bearing bush 14 can be directly supported on the housing parts 24 and 26. The shaft length of the bearing bush 14 is selected, e.g., so that it corresponds to the thickness of the linkage arm 2, wherein the screw 22 connecting the linkage arms 2, 4 preferably includes a shoulder or step that has a separation or distance from the bottom side of the screw head equal to, or substantially equal to, the sum of the thickness of the linkage arm 2 and the thickness of the two housing parts 24 and 26. In this case, the two housing parts 24 and 26 are not pressed against each other by the screw 22 when the rotary hinge 1 is connected, so that the rotary hinge 1 operates with minimal friction and the components in the housing parts 24 and 26 are not damaged.
In the alternative, the bearing bush 14 also can be shaped so that its shaft penetrates through the two housing parts 24, 26 and is supported on the linkage arm 4. In this case, the shaft length of the bearing bush 14 is approximately equal to the sum of the thickness of the linkage arm 2 and the housing parts 24 and 26.
In
The further construction of the embodiment illustrated in
As is illustrated in
In case the present teachings are applied to an optical device, one linkage arm 2, 4 preferably includes an optically-detectable pattern that indicates various angular positions of the linkage arms 2, 4. The other linkage arm 2, 4 preferably includes an optical detector or sensor capable of detecting the optically-detectable pattern.
The features of the described embodiments can be modified in various ways and can be combined with each other. For example, the rotational angle encoder is not required to be a permanent magnet. It can be formed by an inductive resistor that variably influences the current flow induced via wires by the sensor circuit for each respective rotational position.
Moreover, it is not necessary that the rotational angle signal information is evaluated or processed exterior to the rotary hinge 1, as processing or evaluation means (e.g. a microprocessor or state machine) may be incorporated into the rotary hinge 1 in order to locally ascertain the rotational angle between the linkage arms 2, 4.
Furthermore, the rotational angle detection devices can be integrated into existing linkage bearings in a simple way, so that it is possible to utilize and install a common rotational angle detection device in different linkage assemblies for different convertible top design and to adapt each one to the differing requirements of the various convertible tops simply by programming a control device, microprocessor, signal evaluation unit, etc.
For example, the present teachings can be applied to the convertible top of U.S. Pat. No. 6,601,907, the contents of which are incorporated by reference herein in its entirety, to replace the rotational angle detection device disclosed therein. Additional teachings concerning foldable convertible tops that are readily combinable with the present invention include, but are not limited to, U.S. Pat. Nos. 7,150,481, 7,140,666, 7,134,708, 7,118,161, 7,014,246, 6,902,223 and 6,886,888, all of which are incorporated by reference herein in their entireties.
As one specific example thereof,
Number | Date | Country | Kind |
---|---|---|---|
10 2006 006 673 | Feb 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4555120 | Frait et al. | Nov 1985 | A |
4643508 | Schaller | Feb 1987 | A |
4810967 | Yokoyama et al. | Mar 1989 | A |
5198740 | Jacobsen et al. | Mar 1993 | A |
5225747 | Helms et al. | Jul 1993 | A |
5302886 | Jacobsen et al. | Apr 1994 | A |
5307013 | Santos et al. | Apr 1994 | A |
5394070 | Jacobsen et al. | Feb 1995 | A |
5457368 | Jacobsen et al. | Oct 1995 | A |
5557185 | Jacobsen et al. | Sep 1996 | A |
5621317 | Wozniak | Apr 1997 | A |
5621318 | Jacobsen et al. | Apr 1997 | A |
6253630 | Hacker | Jul 2001 | B1 |
6415677 | Skogward | Jul 2002 | B1 |
6601907 | Gutendorf et al. | Aug 2003 | B2 |
6863334 | Dangl et al. | Mar 2005 | B2 |
7214067 | Zaderej | May 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070187980 A1 | Aug 2007 | US |