1. Field of the Invention
The present invention relates to a voice converter which causes a processed voice to imitate a further voice forming a target.
2. Description of the Related Art
Various voice converters which change the frequency characteristics, or the like, of an input voice and then output the voice, have been disclosed. For example, there exist karaoke apparatuses which change the pitch of the singing voice of a singer to convert a male voice to a female voice, or vice versa (for example, Publication of a Translation of an International Application No. Hei. 8-508581 and corresponding international publication WO94/22130).
However, in a conventional voice converter, although the voice is converted, this has simply involved changing the voice characteristics. Therefore, it has not been possible to convert the voice such that it approximates someone's voice, for example. Moreover, it would be very amusing if a karaoke machine were provided with an imitating function whereby not only the voice characteristics, but also the manner of singing, could be made to sound like a particular singer. However, in conventional voice converters, processing of this kind has not been possible.
The present invention is devised with the foregoing in view, an object thereof being to provide a voice converter which is capable of making voice characteristics imitate a target voice. It is a further object of the present invention to provide a voice converter which is capable of making an input voice of a singer imitate the singing manner of a desired singel
In order to resolve the aforementioned problems, according to one aspect, the inventive apparatus is constructed for converting an input voice signal into an output voice signal according to a reference voice signal. The inventive apparatus comprises extracting means for extracting a plurality of sinusoidal wave components from the input voice signal, memory means for memorizing pitch information representative of a pitch of the reference voice signal, modulating means for modulating a frequency of each sinusoidal wave component according to the pitch information retrieved from the memory means, and mixing means for mixing the plurality of the sinusoidal wave components having the modulated frequencies to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by that of the reference voice signal.
Preferably, the inventive apparatus further comprises control means for setting a control parameter effective to control a degree of modulation of the frequency of each sinusoidal wave component by the modulating means so that a degree of influence of the pitch of the reference voice signal to the pitch of the output voice signal is determined according to the control parameter.
Preferably, the memory means comprises means for memorizing primary pitch information representative of a discrete pitch matching a music scale, and secondary pitch information representative of a fractional pitch fluctuating relative to the discrete pitch, and the modulating means comprises means for modulating the frequency of each sinusoidal wave component according to both of the primary pitch information and the secondary pitch information.
Preferably, the inventive apparatus further comprises detecting means for detecting a pitch of the input voice signal based on results of extraction of the sinusoidal wave components, and switch means operative when the detecting means does not detect the pitch from the input voice signal for outputting an original of the input voice signal in place of the synthesized output voice signal.
Preferably, the memory means further comprises means for memorizing amplitude information representative of amplitudes of sinusoidal wave components contained in the reference voice signal, and the modulating means further comprises means for modulating an amplitude of each sinusoidal wave component of the input voice signal according to the amplitude information, so that the mixing means mixes the plurality of the sinusoidal wave components having the modulated amplitudes to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by that of the reference voice signal.
Preferably, the inventive apparatus further comprises means for setting a control parameter effective to control a degree of modulation of the amplitude of each sinusoidal wave component by the modulating means so that a degree of influence of the timbre of the reference voice signal to the timbre of the output voice signal is determined according to the control parameter.
Preferably, the inventive apparatus further comprises means for memorizing volume information representative of a volume variation of the reference voice signal, and means for varying a volume of the output voice signal according to the volume information so that the output voice signal emulates the volume variation of the reference voice signal.
Preferably, the inventive apparatus further comprises means for separating a residual component from the input voice signal after extraction of the sinusoidal wave components, and means for adding the residual component to the output voice signal.
In another aspect, the inventive apparatus is constructed for converting an input voice signal into an output voice signal according to a reference voice signal. The inventive apparatus comprises extracting means for extracting a plurality of sinusoidal wave components from the input voice signal, memory means for memorizing amplitude information representative of amplitudes of sinusoidal wave components contained in the reference voice signal, modulating means for modulating an amplitude of each sinusoidal wave component extracted from the input voice signal according to the amplitude information retrieved from the memory means, and mixing means for mixing the plurality of the sinusoidal wave components having the modulated amplitudes to synthesize the output voice signal having a timbre different from that of the input voice signal and influenced by that of the reference voice signal.
Preferably, the inventive apparatus further comprises control means for setting a control parameter effective to control a degree of modulation of the amplitude of each sinusoidal wave component by the modulating means so that a degree of influence of the timbre of the reference voice signal to the timbre of the output voice signal is determined according to the control parameter.
Preferably, the memory means further memorizes pitch information representative of a pitch of the reference voice signal, and the modulating means further modulates a frequency of each sinusoidal wave component of the input voice signal according to the pitch information, so that the mixing means mixes the plurality of the sinusoidal wave components having the modulated frequencies to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by that of the reference voice signal.
Preferably, the inventive apparatus further comprises means for setting a control parameter effective to control a degree of modulation of the frequency of each sinusoidal wave component by the modulating means so that a degree of influence of the pitch of the reference voice signal to the pitch of the output voice signal is determined according to the control parameter.
Preferably, the memory means comprises means for memorizing primary pitch information representative of a discrete pitch matching a music scale, and secondary pitch information representative of a fractional pitch fluctuating relative to the discrete pitch, and the modulating means comprises means for modulating the frequency of each sinusoidal wave component according to both of the primary pitch information and the secondary pitch information.
Preferably, the inventive apparatus further comprises detecting means for detecting a pitch of the input voice signal based on results of extraction of the sinusoidal wave components, and switch means operative when the detecting means does not detect the pitch from the input voice signal for outputting an original of the input voice signal in place of the synthesized output voice signal.
Preferably, the inventive apparatus further comprises means for memorizing volume information representative of a volume variation of the reference voice signal, and means for varying a volume of the output voice signal according to the volume information so that the output voice signal emulates the volume variation of the reference voice signal.
Preferably, the inventive apparatus further comprises means for separating a residual component from the input voice signal after extraction of the sinusoidal wave components, and means for adding the residual component to the output voice signal.
Next, an embodiment of the present invention is described.
Firstly, the principles of this embodiment are described. Initially, a song by an original or professional singer who is to be imitated is analyzed, and the pitch thereof and the amplitude of sinusoidal wave components therein are recorded. Sinusoidal wave components are then extracted from a current singer's voice, and the pitch and the amplitude of the sinusoidal wave components in the voice being imitated are used to affect or modify these sinusoidal wave components extracted from the current singer's voice. The affected sinusoidal wave components are synthesized to form a synthetic waveform, which is amplified and output. Moreover, the degree to which the wave components are affected can be adjusted by a prescribed control parameter. By means of the aforementioned processing, a voice waveform which reflects the voice characteristics and singing manner of the original or professional singer to be imitated is formed, and this waveform is output whilst a karaoke performance is conducted for the current singer.
In
Numeral 3 denotes a peak detecting section for detecting peaks in the frequency spectrum of the input voice signal Sv. For example, the peak values marked by the X symbols are detected in the frequency spectrum illustrated in
If the peak continuation section 4 discovers corresponding peak values, then they are coupled in time series order and are output as a data series of sets. If it does not find a corresponding peak value, then the peak value is overwritten by data indicating that there is no corresponding peak for that frame.
Next, an interpolating and waveform generating section 5 carries out interpolation processing with respect to the deterministic components output from the peak continuation section 4, and it generates the sinusoidal waves corresponding to the deterministic components after interpolation. In this case, the interpolation is carried out at intervals corresponding to the sampling rate (for example, 44.1 kHz) of a final output voice signal (signal immediately prior to input to an amplifier 50 described hereinafter). The solid lines shown on
Here,
Next, a deviation detecting section 6 shown in
Next, numeral 10 shown in
Next, numeral 20 denotes a target information storing section wherein reference information relating to the object whose voice is to be imitated or emulated (hereinafter, called the target) is stored. The target information storing section 20 holds the reference or target information on the target for separate karaoke songs. The target information comprises pitch information PTo representing a discrete musical pitch of the target voice, a pitch fluctuation component or fractional pitch information PTf, and amplitude information representing deterministic amplitude components (corresponding to the amplitude values A0, A1, A2, . . . output by the separating section 10.) These information elements are stored respectively in a musical pitch storing section 21, a fluctuation pitch storing section 22 and a deterministic amplitude component storing section 23. The target information storing section 20 is composed such that the respective items of information described above are read out in synchronism with the karaoke performance. The karaoke performance is implemented in a performance section 27 illustrated in
Next, the pitch information PTo of the target or reference voice read out from the musical pitch storing section 21 is mixed with the pitch PS of the input voice signal in a ratio control section 30. This mixing is carried out on the basis of the following equation.
(1.0−α)*PS+α*PTo
Here, α is a control parameter which may take a value from 0 to 1. The signal output from the ratio control section 30 is equal to pitch PS when α=0, and it is equal to pitch information PTo when α=1. Furthermore, the parameter α is set to a desired value by means of a user control of a parameter setting section 25. The parameter setting section 25 can also be used to set control parameters β and γ, which are described hereinafter.
Next, a pitch normalizing section 12 as illustrated in
Another ratio control section 31 multiplies the fluctuation component PTf output from the fluctuation pitch storing section 22 by the parameter β (where 0≦β≦1), and outputs the result to a multiplier 14. In this case, the fluctuation component PTf indicates the divergence relating to the pitch information PTo in cent units. Therefore, the fluctuation component PTf is divided by 1200 (1 octave is 1200 cents) in the ratio control section 31, and calculation for finding the second power thereof is carried out, namely, the following calculation:
POW(2,(PTf*β/1200))
The calculation results and the output signal from the multiplier 15 is multiplied with each other by the multiplier 14. The output signal from the multiplier 14 is further multiplied by the output signal of a transposition control section 32 at a multiplier 17. The transposition control section 32 outputs values corresponding to the musical interval through which transposition is performed. The degree of transposition is set as desired. Normally, it is set to no transposition, or a change in octave units is specified. A change in octave units is specified in cases where there is an octave difference in the musical intervals being sung, for instance, where the target is male and the karaoke singer is female (or vice versa). As described above, the target pitch and fluctuation component are appended to the frequency values output from the pitch normalizing section 12, and if necessary, octave transposition is carried out, whereupon the signal is input to a mixer 40.
Next, numeral 13 illustrated in
(1−γ)*ASn′+γ* ATn
The parameter γ is set as appropriate in the parameter setting section 25, and it takes a value from zero to one. The larger the value of γ, the greater the effect of the target. Since the amplitude of the sinusoidal wave components in the voice signal determines voice characteristics, the voice becomes closer to the characteristics of the target, the larger the value of γ. The output signal from the ratio control section 18 is multiplied by the mean value MS in a multiplier 19. In other words, it is converted from a normalized signal to a signal which represents the amplitude directly.
Next, in the mixer 40, the amplitude values and the frequency values are combined. This combined signal comprises the deterministic components of the voice signal Sv of the karaoke singer, with the deterministic components of the target voice added thereto. Depending on the values of the parameters α, β and γ, 100% target-side deterministic components can be obtained for the output voice signal. These deterministic components (group of partial components which are sinusoidal waves) are supplied to an interpolating and waveform generating section 41. The interpolating and waveform generating section 41 is constituted similarly to the aforementioned interpolating and waveform generating section 5 (see
As described above, the inventive voice converting apparatus synthesizes the output voice signal from the input voice signal Sv and the reference or target voice signal. In the inventive apparatus, an analyzer device 9 comprised of the FFT 2, peak detecting section 3, peak continuation section 4 and other sections analyzes a plurality of sinusoidal wave components contained in the input voice signal Sv to derive a parameter set (Fn,An) of an original frequency and an original amplitude representing each sinusoidal wave component. A source device composed of the target information memory section 20 provides reference information (Pto, PTf and AT) characteristic of the reference voice signal. A modulator device including the arithmetic sections 12, 14–19 and 30–32 modulates the parameter set (Fn,An) of each sinusoidal wave component according to the reference information (Pto, PTf and AT). A regenerator device composed of the interpolation and waveform generating section 41 operates according to each of the parameter sets (Fn,″ An″) as modulated to regenerate each of the sinusoidal wave components so that at least one of the frequency and the amplitude of each sinusoidal wave component as regenerated varies from original one, and mixes the regenerated sinusoidal wave components altogether to synthesize the output voice signal.
Specifically, the source device provides the reference information (PTo and PTf) characteristic of a pitch of the reference voice signal. The modulator device modulates the parameter set of each sinusoidal wave component according to the reference information so that the frequency of each sinusoidal wave component as regenerated varies from the original frequency. By such a manner, the pitch of the output voice signal is synthesized according to the pitch of the reference voice signal. Further, the source device provides the reference information characteristic of both of a discrete pitch PTo matching a music scale and a fractional pitch PTf fluctuating relative to the discrete pitch. By such a manner, the pitch of the output voice signal is synthesized according to both of the discrete pitch and the fractional pitch of the reference voice signal.
Further, the source device provides the reference information AT characteristic of a timbre of the reference voice signal. The modulator device modulates the parameter set of each sinusoidal wave component according to the reference information AT so that the amplitude of each sinusoidal wave component as regenerated varies from the original amplitude. By such a manner, the timbre of the output voice signal is synthesized according to the timbre of the reference voice signal.
The inventive voice converting apparatus includes a control device in the form of the parameter setting section 25 that provides a control parameter (α, β and γ) effective to control the modulator device so that a degree of modulation of the parameter set (Fn and An) is variably determined according to the control parameter. The inventive apparatus further includes a detector device in the form of the pitch detecting section 11 that detects a pitch PS of the input voice signal Sv based on analysis of the sinusoidal wave components by the analyzer device 9, and a switch device in the form of the switching section 43 operative when the detector device does not detect the pitch PS from the input voice signal Sv for outputting an original of the input voice signal Sv in place of the synthesized output voice signal. Still further, the inventive apparatus includes a memory device in the form of a volume data section 60 (described later in detail with reference to
Next, the operation of the embodiment having the foregoing composition is described. Firstly, when a karaoke song is specified, the song data for that karaoke song is read out by the performance section 27, and a musical accompaniment sound signal is created on the basis of this song data and supplied to the amplifier 50. The singer then starts to sing the karaoke song to this accompaniment, thereby causing the input voice signal Sv to be output from the microphone 1. The deterministic components of this input voice signal Sv are detected successively by the peak detecting section 3, a frame by frame. For example, sampling results as illustrated in part (1) of
Meanwhile, the frequency values shown in part (4) of
As described above, the inventive voice converting method converts an input voice signal Sv into an output voice signal according to a reference voice signal or target voice signal. In one aspect, the inventive method is comprised of the steps of extracting a plurality of sinusoidal wave components (Fn and An) from the input voice signal Sv, memorizing pitch information (PTo and PTf) representative of a pitch of the reference voice signal, modulating a frequency Fn of each sinusoidal wave component according to the memorized pitch information, mixing the plurality of the sinusoidal wave components having the modulated frequencies to synthesize the output voice signal having a pitch different from that of the input voice signal and influenced by that of the reference voice signal. In another aspect, the inventive method is comprised of the steps of extracting a plurality of sinusoidal wave components from the input voice signal Sv, memorizing amplitude information AT representative of amplitudes of sinusoidal wave components contained in the reference voice signal, modulating an amplitude An of each sinusoidal wave component extracted from the input voice signal Sv according to the memorized amplitude information, and mixing the plurality of the sinusoidal wave components having the modulated amplitudes to synthesize the output voice signal having a voice characteristic or timbre different from that of the input voice signal Sv and influenced by that of the reference voice signal.
(1) As shown in
(2) In the present embodiment, the presence or absence of a pitch in a subject frame is determined by the pitch detecting section 11. However, detection of pitch presence is not limited to this, and may also be determined directly from the state of the input voice signal Sv.
(3) Detection of sinusoidal wave components is not limited to the method used in the present embodiment. Other methods might be possible to detect sinusoidal waves contained in the voice signal.
(4) In the present embodiment, the target pitch and deterministic amplitude components are recorded. Alternatively, it is possible to record the actual voice of the target and then to read it out and extract the pitch and deterministic amplitude components by real-time processing. In other words, processing similar to that carried out on the voice of the singer in the present embodiment may also be applied to the voice of the target.
(5) In the present embodiment, both the musical pitch and the fluctuation component of the target are used in processing, but it is possible to use musical pitch alone. Moreover, it is also possible to create and use pitch data which combines the musical pitch and fluctuation component.
(6) In the present embodiment, both the frequency and amplitude of the deterministic components of the singer's voice signal are converted, but it is also possible to convert either frequency or amplitude alone.
(7) In the present embodiment, a so-called oscillator system is adopted which uses an oscillating device for the interpolating and waveform generating section 5 or 41. Besides this, it is also possible to use a reverse FFT, for example.
(8) The inventive voice converter may be implemented by a general computer machine as shown in
As described above, according to the present invention, it is possible to convert a voice such that it imitates the voice characteristics and singing manner of a target voice.
Number | Date | Country | Kind |
---|---|---|---|
9-296050 | Oct 1997 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4797926 | Bronson et al. | Jan 1989 | A |
5504270 | Sethares | Apr 1996 | A |
5536902 | Serra et al. | Jul 1996 | A |
5567901 | Gibson et al. | Oct 1996 | A |
5621182 | Matsumoto | Apr 1997 | A |
5644677 | Park et al. | Jul 1997 | A |
5749073 | Slaney | May 1998 | A |
5847303 | Matsumoto | Dec 1998 | A |
5862232 | Shinbara et al. | Jan 1999 | A |
5955693 | Kageyama | Sep 1999 | A |
5963907 | Matsumoto | Oct 1999 | A |
5966687 | Ojard | Oct 1999 | A |
6046395 | Gibson et al. | Apr 2000 | A |
6182042 | Peevers | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
H2-59477 | Dec 1990 | JP |
03-026468 | Mar 1991 | JP |
07-056598 | Mar 1995 | JP |
08-263077 | Oct 1996 | JP |
09-185392 | Jul 1997 | JP |
94-22130 | Sep 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20010044721 A1 | Nov 2001 | US |