Exemplary embodiments of the invention relate to systems, methods, and devices for converting sheet materials. More specifically, exemplary embodiments relate to a converting machine for converting paperboard, corrugated board, cardboard, and similar sheet materials into templates for boxes and other packaging.
Shipping and packaging industries frequently use paperboard and other sheet material processing equipment that converts sheet materials into box templates. One advantage of such equipment is that a shipper may prepare boxes of required sizes as needed in lieu of keeping a stock of standard, pre-made boxes of various sizes. Consequently, the shipper can eliminate the need to forecast its requirements for particular box sizes as well as to store pre-made boxes of standard sizes. Instead, the shipper may store one or more bales of fanfold material, which can be used to generate a variety of box sizes based on the specific box size requirements at the time of each shipment. This allows the shipper to reduce storage space normally required for periodically used shipping supplies as well as reduce the waste and costs associated with the inherently inaccurate process of forecasting box size requirements, as the items shipped and their respective dimensions vary from time to time.
In addition to reducing the inefficiencies associated with storing pre-made boxes of numerous sizes, creating custom sized boxes also reduces packaging and shipping costs. In the fulfillment industry it is estimated that shipped items are typically packaged in boxes that are about 65% larger than the shipped items. Boxes that are too large for a particular item are more expensive than a box that is custom sized for the item due to the cost of the excess material used to make the larger box. When an item is packaged in an oversized box, filling material (e.g., Styrofoam, foam peanuts, paper, air pillows, etc.) is often placed in the box to prevent the item from moving inside the box and to prevent the box from caving in when pressure is applied (e.g., when boxes are taped closed or stacked). These filling materials further increase the cost associated with packing an item in an oversized box.
Customized sized boxes also reduce the shipping costs associated with shipping items compared to shipping the items in oversized boxes. A shipping vehicle filled with boxes that are 65% larger than the packaged items is much less cost efficient to operate than a shipping vehicle filled with boxes that are custom sized to fit the packaged items. In other words, a shipping vehicle filled with custom sized packages can carry a significantly larger number of packages, which can reduce the number of shipping vehicles required to ship the same number of items. Accordingly, in addition or as an alternative to calculating shipping prices based on the weight of a package, shipping prices are often affected by the size of the shipped package. Thus, reducing the size of an item's package can reduce the price of shipping the item. Even when shipping prices are not calculated based on the size of the packages (e.g., only on the weight of the packages), using custom sized packages can reduce the shipping costs because the smaller, custom sized packages will weigh less than oversized packages due to using less packaging and filling material.
Although sheet material processing machines and related equipment can potentially alleviate the inconveniences associated with stocking standard sized shipping supplies and reduce the amount of space required for storing such shipping supplies, previously available machines and associated equipment have various drawbacks. For instance, previously available machines have had a significant footprint and have occupied a lot of floor space. The floor space occupied by these large machines and equipment could be better used, for example, for storage of goods to be shipped. In addition to the large footprint, the size of the previously available machines and related equipment makes manufacturing, transportation, installation, maintenance, repair, and replacement thereof time consuming and expensive. For example, some of the existing machines and related equipment have a length of about 22 feet and a height of 12 feet.
In addition to their size, previous converting machines have been quite complex and have required access to sources of high power and compressed air. More specifically, previous converting machines have included both electrically powered components as well as pneumatic components. Including both electric and pneumatic components increases the complexity of the machines and requires the machines to have access to both electrical power and compressed air, as well as increases the size of the machines.
Accordingly, it would be advantageous to have a relatively small and simple converting machine to conserve floor space, reduce electrical power consumption, eliminate the need for access to compressed air, and reduce maintenance costs and downtime associated with repair and/or replacement of the machine.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The embodiments described herein generally relate to systems, methods, and devices for processing sheet materials and converting the same into packaging templates. More specifically, the described embodiments relate to a compact converting machine for converting sheet materials (e.g., paperboard, corrugated board, cardboard) into templates for boxes and other packaging.
While the present disclosure will be described in detail with reference to specific configurations, the descriptions are illustrative and are not to be construed as limiting the scope of the present invention. Various modifications can be made to the illustrated configurations without departing from the spirit and scope of the invention as defined by the claims. For better understanding, like components have been designated by like reference numbers throughout the various accompanying figures.
As used herein, the term “bale” shall refer to a stock of sheet material that is generally rigid in at least one direction, and may be used to make a packaging template. For example, the bale may be formed of continuous sheet of material or a sheet of material of any specific length, such as corrugated cardboard and paperboard sheet materials. Additionally, the bale may have stock material that is substantially flat, folded, or wound onto a bobbin.
As used herein, the term “packaging template” shall refer to a substantially flat stock of material that can be folded into a box-like shape. A packaging template may have notches, cutouts, divides, and/or creases that allow the packaging template to be bent and/or folded into a box. Additionally, a packaging template may be made of any suitable material, generally known to those skilled in the art. For example, cardboard or corrugated paperboard may be used as the template material. A suitable material also may have any thickness and weight that would permit it to be bent and/or folded into a box-like shape.
As used herein, the term “crease” shall refer to a line along which the template may be folded. For example, a crease may be an indentation in the template material, which may aid in folding portions of the template separated by the crease, with respect to one another. A suitable indentation may be created by applying sufficient pressure to reduce the thickness of the material in the desired location and/or by removing some of the material along the desired location, such as by scoring.
The terms “notch,” “cutout,” and “cut” are used interchangeably herein and shall refer to a shape created by removing material from the template or by separating portions of the template, such that a cut through the template is created.
With continued reference to
As can be seen, converting assembly 114 is elevated above and spaced apart from a support surface when converting assembly 114 is mounted on supports 118. For instance, as shown in
As shown in
In the illustrated embodiment, for instance, converting machine 106 is designed to receive sheet material 104 from two bales 102a, 102b. Each of bales 102a, 102b may be positioned between adjacent bale guides 122 in order to properly align bales 102a, 102b with converting assembly 114. To assist with positioning of bales 102a, 102b between adjacent bales guides 122, bale guides 122 may be angled or may include flared portions that act to funnel bales 102 into the proper positions relative to converting assembly 114.
In some embodiments, bale guides 122 may be movably or slidably connected to structure 112 and/or platform 120, such that one or more of bale guides 122 may be moved along the width of converting machine 106 to increase or decrease the distance between adjacent bale guides 122. The movability of guides 122 may accommodate bales 102 of different widths.
As shown in
As best seen in
Each set of lower and upper infeed wheels 126, 128 are designed and arranged to guide sheet material 104 into converting assembly 114 while creating few if any bends, folds, or creases in sheet material 104. More specifically, lower infeed wheels 126 are positioned such that the axes of rotation of lower infeed wheels 126 are both vertically and horizontally offset from the axes of rotation of upper infeed wheels 128. As shown, the axes of rotation of lower infeed wheels 126 are positioned vertically lower than the axes of rotation of upper infeed wheels 128. Additionally, the axes of rotation of lower infeed wheels 126 are positioned horizontally further away from converting assembly 114 than the axes of rotation of upper infeed wheels 128. Nevertheless, lower and upper infeed wheels 126, 128 may intersect a common horizontal plane and/or a common vertical plane. In any case, lower and upper infeed wheels 126, 128 are positioned relative to one another such that sheet material 104 may be fed therebetween and into converting assembly 114.
Lower and upper infeed wheels 126, 128 may rotate to facilitate smooth movement of sheet material 104 into converting assembly 114. Additionally, lower infeed wheels 126 and/or upper infeed wheels 128 may be at least somewhat deformable so as to limit or prevent the formation of bends, folds, or creases in sheet material 104 as it is fed into converting assembly 114. That is, lower infeed wheels 126 and/or upper infeed wheels 128 may be able to at least partially deform as sheet material 104 is fed therebetween. When lower infeed wheels 126 and/or upper infeed wheels 128 partially deform, lower infeed wheels 126 and/or upper infeed wheels 128 may more closely conform to the shape of sheet material 104. For instance, when sheet material 104 is being fed into converting assembly 114, sheet material 104 may be pulled around infeed wheels 126, 128 (e.g., over lower infeed wheels 126 or under upper infeed wheels 126). If infeed wheels 126, 128 were not at least partially deformable, sheet material 104 may be bent or folded as it is pulled around infeed wheels. However, when infeed wheels 126, 128 are at least partially deformable, infeed wheels 126, 128 may deform so that the area of infeed wheels 126, 128 that contacts sheet material 104 is flatter than the normal radius of infeed wheels 126, 128. As a result, less folds or creases will be formed in sheet material 104 as it is fed into converting machine 114.
Lower infeed wheels 126 and/or upper infeed wheels 128 may include an outer surface formed of a deformable and/or elastic material (e.g., foam, rubber) or may include a low-pressure tube/tire thereabout. The deformable/elastic material or low-pressure tubes/tires may deform and/or absorb the forces applied to sheet material 104 in order to prevent or limit the formation of folds, bends, or creases in sheet material 104 during the feeding process. Additionally, the deformable/elastic material or low-pressure tubes/tires may also limit noises associated with feeding sheet material 104 into converting assembly 114.
As sheet material 104 is fed through converting assembly 114, converting assembly 114 may perform one or more conversion functions (e.g., crease, bend, fold, perforate, cut, score) on sheet material 104 in order to create packaging templates 108. Converting assembly 114 may include therein a converting cartridge 130 that feeds sheet material 104 through converting assembly 114 and performs the conversion functions thereon.
More specifically, the converting cartridge frame may be connected to support structure 112 at three connection points. By using three connection points, rather than four or more, the converting cartridge frame is less likely to bend during assembly or use. Optionally, each of the connection points may be flexible connections to allow converting cartridge frame to move slightly or “float” relative to support structure 112. The flexible connections may be achieved using resilient materials (e.g., rubber washers) at the connection sites, for example. Additionally, the three connection points may be arranged so that two of the connection points control the longitudinal movement of the converting cartridge frame, but not the transverse movement of the converting cartridge frame. The third connection point may control the transverse movement of the converting cartridge frame, but not the longitudinal movement of the converting cartridge frame. In this way, converting cartridge 130 may remain straight and the functional aspects of converting cartridge 130 will not be adversely affected due to misalignment or other results of bending or twisting of the converting cartridge frame.
As can be seen in
Some of guide channels 132 may be held or secured in a fixed position along the width of converting cartridge 130 while other guide channels 132 are able to move along at least a portion of the width of converting cartridge 130. In the illustrated embodiment, converting cartridge 130 includes movable guide channels 132a and fixed guide channels 132b. More specifically, fixed guide channels 132b may be secured in place between the opposing sides of converting cartridge 130. Movable guide channels 132a are disposed between left and right sides of converting cartridge 130 and fixed guide channels 132b such that movable guide channels 132a are able to move back and forth between the left and right sides of converting cartridge 130 and fixed guide channels 132b.
Movable guide channels 132a may be able to move so that guide channels 132a, 132b are able to accommodate sheet materials 104 of different widths. For instance, movable guide channels 132a may be able to move closer to fixed guide channels 132b when a narrower sheet material 104 is being converted than when a wider sheet material 104 is being converted. When a wider sheet material 104 is being converted, movable guide channels 132a may be moved away from fixed guide channels 132b so that the wider sheet material 104 may be passed between guide channels 132a, 132b. Movable guide channels 132a may be biased toward fixed guide channels 132b so that, regardless of how wide sheet material 104 is, movable and fixed guide channels 132ab, 132b will be properly spaced apart to guide sheet material 104 straight through converting assembly 114. Movable guide channels 132a may be biased toward fixed guide channels 132b with a spring or other resilient mechanism.
Fixed guide channels 132b may act as “zero” or reference points for the positioning of converting tools, which will be discussed in greater detail below. More specifically, the converting tools may reference the positions of fixed guide channels 132b to determine the location of sheet material 104 or an edge thereof. When the converting tools have been properly positioned using fixed guide channels 132b as zero points, the converting tools can perform the desired conversion functions at the proper locations on sheet material 104. In addition to providing a zero or reference point to the converting tools, the location of fixed guide channels 132b and/or the relative distance between guide channels 132a, 132b can also indicate to a control system the width of the sheet material 104 that is being used. Furthermore, allowing movable guide channel 132a to move relative to fixed guide channel 132b allows for small deviations in the width of sheet material 104.
In the illustrated embodiment, converting cartridge 130 includes two sets of guide channels 132 (e.g., movable guide channel 132a and fixed guide channel 132b) that guide lengths of sheet material 104 through converting assembly 114. It will be understood, however, that converting cartridge 130 may include one or multiple sets of guide channels for feeding one or multiple, side-by-side lengths of sheet material 104 (e.g., from multiple bales 102) through converting assembly 114. For instance, the illustrated guide channels 132a, 132b form a first (or left) track for feeding a first length of sheet material 104 from bale 102a (
As also illustrated in
Feed rollers 134 may be positioned, angled, shaped (e.g., tapered), or adjusted so as to apply at least a slight side force on sheet material 104. The side force applied to sheet material 104 by feed rollers 134 may be generally in the direction of fixed guide channel 132b. As a result, sheet material 104 will be at least slightly pushed toward/against fixed guide channel 132b as sheet material 104 is advanced through converting assembly 114. One benefit of at least slightly pushing sheet material 104 toward/against fixed guide channel 132b is that the biasing force required to bias movable guide channel 132a toward fixed guide channel 132b (e.g., the zero point for the converting tools) is reduced.
In the illustrated embodiment, each set of feed rollers 134 includes an active roller 134a and a pressure roller 134b. As discussed below, active rollers 134a may be actively rolled by an actuator or motor in order to advance sheet material 104 through converting assembly 114. Although pressure rollers 134b are not typically actively rolled by an actuator, pressure rollers 134b may nevertheless roll to assist with the advancement of sheet material 104 through converting assembly 114.
Active rollers 134a are secured to converting cartridge 130 such that active rollers 134a are maintained in generally the same position. More specifically, active rollers 134a are mounted on shaft 136. In contrast, pressure rollers 134b are able to be moved closer to and further away from active rollers 134a. When pressure rollers 134b are moved toward active rollers 134a, feed rollers 134a, 134b cooperate to advance sheet material 104 through converting assembly 114. In contrast, when pressure rollers 134b are moved away from active rollers 134a, sheet material 104 is not advanced through converting assembly 114. That is, when pressure rollers 134b are moved away from active rollers 134a, there is insufficient pressure applied to sheet material 104 to advance sheet material 104 through converting assembly 114.
Pressure roller 134b may be selectively moved from the activated position to the deactivated position by engaging a pressure roller cam 142 on pressure roller block 138. The engagement of pressure roller cam 142 will be discussed in greater detail below. Briefly, however, when sheet material 104 is not to be advanced through converting assembly 114, pressure roller cam 142 may be engaged to cause pressure roller block 138 and pressure roller 134b to pivot about hinge 140 so that pressure roller 134b is moved to the deactivated position, as shown in
Pressure roller 134b may be biased toward either the activated position or the deactivated position. For instance, pressure roller 134b may be biased toward the activated position so that pressure roller 134b remains in the activated position unless actively moved to the deactivated position (e.g., by engagement of pressure roller cam 142). Alternatively, pressure roller 134b may be biased toward the deactivated position so that pressure roller 134b remains in the deactivated position unless actively moved to the activated position.
In the illustrated embodiment, once pressure roller 134b has been moved to the deactivated position, pressure roller 134b may be selectively held in the deactivated position. For instance, when pressure roller 134b is moved to the deactivated position, a locking mechanism 144 may hold pressure roller 134b in the deactivated position until it is desired to move pressure roller 134b to the activated position. By way of example, locking mechanism 144 may be an electromagnet that holds pressure roller block 138 and pressure roller 134b in the deactivated position. When it is desired to move pressure roller 134b to the activated position, locking mechanism 144 may be released, such as by deactivating its magnetic force. The magnetic force may be deactivated by turning off the electromagnetic field of the electromagnet. Rather than using an electromagnet, a permanent magnet may be used to hold pressure roller block 138 and pressure roller 134b in the deactivated position. When it is desired to move pressure roller 134b to the activated position, the magnetic force of the permanent magnet may be deactivated by applying an electric field around the magnet that counteracts the magnet's magnetic field. Alternatively, locking mechanism 144 may be a mechanical mechanism, solenoid, or other device than can selectively hold pressure roller 134b in the deactivated position. Locking mechanism 144 enables pressure roller 134b to be held in the deactivated position without require the continuous engagement of pressure roller cam 142.
When it is desired to advance sheet material 104 through converting assembly 114, pressure roller 134b may be moved to the activated position as described above. One or both of feed rollers 134 may be actively rotated to advance sheet material 104. For instance, in the illustrated embodiment, shaft 136 (on which active roller 134a is mounted) is connected to a stepper motor 146 (
Returning attention to
To perform the transverse conversions, crosshead 150 may move along at least a portion of the width of converting cartridge 130 in a direction generally perpendicular to the direction in which sheet material 104 is fed through converting assembly 114 and/or the length of sheet material 104. In other words, crosshead 150 may move across sheet material 104 in order to perform transverse conversions on sheet material 104. Crosshead 150 may be movably mounted on a track 154 to allow crosshead 150 to move along at least a portion of the width of converting cartridge 130.
While creasing wheels 162 are able to rotate, creasing wheels 162 may remain in substantially the same vertical position relative to body 156. In contrast, cutting wheel 160 may be selectively raised and lowered relative to body 156. For instance, as shown in
In the illustrated embodiment, cutting wheel 160 is rotatably mounted on a cutting wheel frame 164. Cutting wheel frame 164 is movably connected to body 156. In particular, cutting wheel frame 164 is slidably mounted on one or more shafts 163. Cutting wheel frame 164 is held on shafts 163 and biased toward the raised position by one or more springs 165 that are connected between body 156 and cutting wheel frame 164.
One or more solenoids 166 may be used to selectively move cutting wheel frame 164 and cutting wheel 160 from the raised position (
While the present disclosure references the use of solenoids to move various components, such reference is made merely by way of example. Other types of actuators may be used to perform the functions described herein. For instance, other linear or non-linear actuators may be used, including voice coils, linear motors, rotational motor, lead screws, and the like. Accordingly, reference to solenoids is not intended to limit the scope of the present invention. Rather, the present invention may employ solenoids or any other actuator capable of performing the functions described herein in connection with solenoids.
As shown in
In order to reduce the amount of force required of solenoids 166 (and thus the power required to activate solenoids 166) to cut through sheet material 104, the kinetic energy of the moving components of crosshead 150 may be used to assist in cutting through sheet material 104. More specifically, the activation of solenoids 166 causes solenoid plungers 168 to move as they extend out of solenoids 166. The movement of solenoid plungers 168 causes cutting wheel frame 164 and cutting wheel 160 to move as well. As solenoid plungers 168, cutting wheel frame 164, and cutting wheel 160 begin to move, they build up momentum, and thus kinetic energy, until cutting wheel 160 engages sheet material 104. When cutting wheel 160 engages sheet material 104, the built-up kinetic energy of solenoid plungers 168, cutting wheel frame 164, and cutting wheel 160 works with the force provided by solenoids 166 to cut through sheet material 104. Thus, utilizing the kinetic energy of the components of crosshead 150 in this way reduces the forces required of solenoids 166.
In some converting machines, a cut is made in a material by moving a cutting tool over the material to a location where the cut needs to begin. Prior to initiating the cut, the cross movement of the cutting tool is stopped. Then the cutting tool is lowered to penetrate the material and the cross movement of the cutting tool is resumed. In such a situation, a relatively significant amount of force may be required to lower the cutting tool and penetrate the material. This is partially due to the fact that some of the force used to lower the cutting tool will be used to compress the material before the cutting tool actually penetrates through the material. The compression of the material is at least partially due to a relatively large chord of the cutting tool trying to cut through the material at the same time.
In contrast, converting machine 100 may include an “on-the-fly” mode where the movement of crosshead 150 over sheet material 104 and the lowering of cutting wheel 160 are combined to initiate a cut through sheet material 104. In an on-the-fly mode, crosshead 150 may begin moving across sheet material 104 toward the location where a cut needs to be made in sheet material 104. Rather than stopping the cross movement of crosshead 150 before beginning to lower cutting wheel 160, cutting wheel 160 is lowered while crosshead 150 continues to move across sheet material 104. The cross movement of crosshead 150 and the lowering of cut wheel 160 may be timed so that cutting wheel 160 engages and initiates a cut in sheet material 104 at the desired location.
In an on-the-fly mode, less force is required of solenoids 166 to lower cutting wheel 160 in order to initiate a cut through sheet material 104. The decreased force is at least partially due to a smaller chord of cutting wheel 160 being used to initiate the cut in sheet material 104. More specifically, as crosshead 150 moves across sheet material 104 and cutting wheel 160 is lowered into engagement with sheet material 104, only a leading edge of cutting wheel 160 will be used to initiate the cut. As a result, less of the force used to lower cutting wheel 160 will be expended in compressing sheet material 104 before cutting wheel 160 is able to penetrate sheet material 104.
Furthermore, a pulse-width modulation (PWM) circuit board or other voltage adjusting electric components may generate sufficiently high currents within solenoids 166 so that solenoids 166 are able to generate enough force to cut through sheet material 104. Once cutting wheel 160 has initiated a cut through sheet material, the PWM circuit board or other voltage adjusting electric components may reduce the current in solenoids 166, while still enabling solenoids 166 to maintain cutting wheel 160 in the lowered position. In other words, a relatively high current may be generated in solenoids 166 to provide enough force to enable cutting wheel 160 to penetrate sheet material 104. Once cutting wheel 160 has penetrated sheet material 104, the current in solenoids 166 may be reduced, while still enabling solenoids 166 to continue cutting through sheet material 104.
The ability to use varying voltages/currents to initiate and continue making a cut in sheet material 104 is made possible, at least in part, by the characteristics of solenoids 166. Solenoids have unique force-to-stroke curve profiles. In the beginning of a solenoid's stroke, the solenoid has a relatively limited force. Further into the solenoid's stroke, the force increases dramatically. Accordingly, a relatively high voltage/current can be used during the solenoid's stroke in order to generate the relative large force at the end of the stroke so that the cutting wheel may penetrate the sheet material. At the end of the solenoid's stroke (e.g., when the plunger is fully extended), the voltage/current can be reduced while still maintaining a relative high holding force. That is, even with the reduced voltage/current, the solenoid may have enough force to hold the cutting wheel in place so that the cutting wheel continues cutting sheet material 104.
Being able to adjust to the voltage level supplied to solenoids 166 (and thus the current in solenoids 166) can also be beneficial for various reasons. For instance, less power can be used to achieve the desired results. For example, high voltage can be used for a short time in order to initiate a cut, while lower voltage can be used to continue making the cut. Not only does this reduce the overall amount of power required, but it can improve the performance of certain components. For instance, limiting high voltage supplies to relatively short durations can prevent the temperature of solenoids 166 from increasing or overheating due to high currents in solenoids 166. Higher temperatures or overheating of solenoids 166 can cause damage thereto and/or reduce their activation force. The ability to adjust the voltage can also be beneficial when activating solenoids 166 when no sheet material 104 is below cutting wheel 160 (“dry-firing”). For instance, if solenoids 166 were dry-fired with a high voltage, cutting wheel 160 may be lowered too far or too rapidly, potentially resulting in damage and/or excessive mechanical wear.
When crosshead 150 has finished performing the transverse conversions on sheet material 104, crosshead 150 may be used to move pressure roller 134b from the activated position to the deactivated position. More specifically, when it is desired to stop advancing sheet material 104, crosshead 150 may be moved adjacent to pressure roller block 138 such that a portion of crosshead 150 engages pressure roller cam 142. As noted above, engagement of pressure roller cam 142 causes pressure roller block 138 and pressure roller 134 to pivot about hinge 140 to the deactivated position. As shown in
In addition to being able to create transverse conversions with crosshead 150, conversion functions may also be made on sheet material 104 in a direction substantially parallel to the direction of movement and/or the length of sheet material 104. Conversions made along the length of and/or generally parallel to the direction of movement of sheet material 104 may be considered “longitudinal conversions.”
Longheads 152 may be used to create the longitudinal conversions on sheet material 104. More specifically, longheads 152 may be selectively repositioned along the width of converting cartridge 130 (e.g., back and forth in a direction that is perpendicular to the length of sheet material 104) in order to properly position longheads 152 relative to the sides of sheet material 104. By way of example, if a longitudinal crease or cut needs to be made two inches from one edge of sheet material 104 (e.g., to trim excess material off of the edge of sheet material 104), one of longheads 152 may be moved perpendicularly across sheet material 104 to properly position longhead 152 so as to be able to make the cut or crease at the desired location. In other words, longheads 152 may be moved transversely across sheet material 104 to position longheads 152 at the proper location to make the longitudinal conversions on sheet material 104.
As can be seen in
Cutting wheel 176 and creasing wheel 178 are rotatably connected to body 170 and oriented to be able to make the longitudinal conversions. In some embodiments, cutting wheel 176 and creasing wheel 178 may be pivotally connected to body 170 and/or longhead 152 may be pivotally connected to slider 172. As sheet material 104 advances through converting assembly 114, sheet material 104 may not advance in a perfectly straight line. By allowing longhead 152, cutting wheel 176, and/or creasing wheel 178 to pivot, the orientation of cutting wheel 176 and creasing wheel 178 may change to more closely follow the feeding direction of sheet material 104. Additionally, the braking force (discussed below) required to maintain longhead 152 in place may be reduced because sheet material 104 will apply less side force to cutting wheel 176 and creasing wheel 178. Similarly, the biasing force required to bias movable guide channels 132a toward fixed channels 132b may likewise be reduced.
When longhead 152 has been repositioned at the desired location along the width of converting cartridge 130, longhead 152 may be secured in place. More specifically, once positioned as desired, longhead 152 may be secured to a brake belt 180, other another portion of converting cartridge 130.
When it is desired to reposition longhead 152 along the length of track 174, brake pivot arm 182 may be pivoted to disengage engagement member 186 from brake belt 180, as shown in
Notably, spring 184 is connected between body 170 and brake pivot arm 182 in such a way that the force required of solenoid 188 to pivot brake pivot arm 182 remains substantially constant. As brake pivot arm 182 is pivoted from the locked position (
With engagement member 186 disengaged from brake belt 180, longhead 152 may be repositioned along the length of track 174. Rather than equipping longhead 152 with an actuator dedicated to repositioning longhead 152, crosshead 150 may be used to reposition longhead 150. More specifically, crosshead 150 and longhead 152 may be connected together or otherwise engaged such that movement of crosshead 150 results in movement of longhead 152. This arrangement, therefore, only requires the ability to actively control crosshead 150, while longhead 152 may be passively moved by crosshead 150. Furthermore, longheads 152 do not require electric sensors and electric or pneumatic actuators. As a result, longheads 152 do not need to be connected to electrical power or compressed air, such as with electrical cables/wires and hoses in a cable chain. This enables a much more cost-effective design of longheads 152, as well as enables a more cost-effective manufacturing and maintenance friendly design of the whole converting assembly 114 and converting machine 106.
One exemplary manner for selectively connecting longhead 152 to crosshead 150 is shown in
Notch 194 can also include substantially vertical interior walls. The vertical interior walls of notch 194 apply the forces to extension 192 that result in the movement of longhead 152. Notably, the vertically walls of notch 194 only apply horizontal forces on extension 192. Since notch 194 does not apply any downward forces on extension 192, the force required of solenoid 188 to maintain brake pivot arm 182 in the unlocked position is reduced. In connection therewith, a relatively low amount of power is required by solenoid 188 to maintain brake pivot arm 182 in the unlocked position while longhead 152 is moved.
Like solenoids 166, the kinetic energy of solenoid plunger 190 may be used to reduce the amount of force required of solenoid 188 (and thus the power required to activate solenoid 188). More specifically, the activation of solenoid 188 causes solenoid plunger 190 to move as it extends out of solenoid 188. As solenoid plunger 190 begins to move, it builds up momentum, and thus kinetic energy. When plunger 190 engages brake pivot arm 182, the built-up kinetic energy of plunger 190 works with the force provided by solenoid 188 to pivot brake pivot arm 182 so as to disengage engagement member 186 from brake belt 180. In addition to disengaging engagement member 186, pivoting of brake pivot arm 182 causes brake pivot arm 182 to build up kinetic energy. The combined kinetic energy of plunger 190 and brake pivot arm 182 similarly reduces the force required of solenoid to correct minor position errors of longhead 152 and to connect crosshead 150 to longhead 152. Specifically, the kinetic energy of plunger 190 and brake pivot arm 182 facilitates insertion of extension 192 into notch 194, which both corrects position errors of longhead 152 and connects crosshead 150 and longhead 152 together.
As shown in
As noted above, crosshead 150 includes a sensor 161. Sensor 161 may be used to detect the presence of longheads 152 adjacent to crosshead 150. For instance, when it is desired to reposition a longhead 152, crosshead 150 may move across converting cartridge 130 to the location where a longhead 152 is supposed to be (according to a control system). Once crosshead 150 is so positioned, sensor 161 may be used to confirm that longhead 152 is at the proper position. Upon detection of the longhead 152 by sensor 161, solenoid 188 may be activated so as to release the braking mechanism of the longhead 152 and connect the longhead 152 to crosshead 150. Once crosshead 150 has moved the longhead 152 to the desired location, sensor 161 may be used to confirm the proper positioning of the longhead 152 at the desired location (either before or after disengagement between crosshead 150 and longhead 152).
Sensor may also be used to count the number of longheads 152 and determine the current position of each longhead 152. Converting machine 100 may include control circuitry or be connected to a computer that monitors the positions of longheads 152 and controls crosshead 150. In the event that sensor 161 does not detect a longhead 152 at the last known position, the control circuitry can direct crosshead 150 to move across converting cartridge 130 so that sensor 161 may detect the location of the missing longhead 152. If sensor 161 is unable to locate each of the longheads 152 after a predetermined number of attempts, an error message may be generated to direct an operator to manually locate the longheads 152 or call for maintenance or service.
In addition to detecting and monitoring the location of longheads 152, crosshead 150 may include a sensor 196 (
Sensor 196 may similarly detect the current location of movable guide channel 132a so that the control circuitry may determine if movable guide channel 132a is in the proper position. As noted above, movable guide channel 132a is able to move to accommodate sheet material 104 of different widths. As a result, movable guide channel 132a may not be in the proper location if sheet material 104 has run out, if sheet material 104 is damaged, or converting machine 100 is loaded with sheet material 104 that is wider or narrower than what control circuitry is set for. In such cases, the control circuitry may generate an error message indicating that fixed guide channel 132b needs to be repositioned, new sheet material 104 needs to be loaded, or the like.
As noted above, converting roller 200 supports sheet material 104 as longheads 152 perform the longitudinal conversions on sheet material 104. Longheads 152 and converting roller 200 may be positioned relative to one another such that the conversion functions are performed on sheet material 104 as sheet material 104 passes between longheads 152 and converting roller 200. For instance, as shown in
Other arrangements of converting roller 200, cutting wheel 176, and creasing wheel 178 are also possible. For instance, in order to reduce or eliminate contact between cutting wheel 176 and converting roller 200, the rotational axis of cutting wheel 176 may be horizontally offset from the rotational axis of converting roller 200 such that cutting wheel 176 is positioned slightly behind converting roller 200. By horizontally offsetting cutting wheel 176 from converting roller 200, cutting wheel 176 may be positioned lower without extending further (or at all) into converting roller 200. The lower positioning of cutting wheel 176 may also ensure that cutting wheel 176 cuts through the entire thickness of sheet material 104.
In the case where cutting wheel 176 and/or creasing wheel 178 contact or extend into converting roller 200, it may be necessary to separate or otherwise disengage converting roller 200 and cutting wheel 176 and/or creasing wheel 178 before repositioning longheads 152. With attention to
As shown in
As shown in
Eccentric bearing assembly 210 includes a one-way bearing 216, an eccentric bearing block 218, and a two-way bearing 219. As shown, eccentric bearing block 218 includes a recess 221 in which one-way bearing 216 is disposed. Eccentric bearing block 218 also includes a projection 223 on which bearing 219 is mounted. Bearing 219 enables eccentric bearing block 218 to rotate within and relative to recess 214 (e.g., when converting roller 200 is raised or lowered) in a low friction and long-lasting manner. Furthermore, eccentric bearing block 218 includes an aperture 225 through which shaft 202 extends.
As best seen in
When belt 148 rotates shaft 202 in the first direction, one-way bearing 216 allows shaft 202 to rotate in the first direction, relative to eccentric bearing block 218, and about axis A. In contrast, when belt 148 rotates shaft 202 in the second direction, one-way bearing 216 locks together with eccentric bearing block 218 to prevent relative movement between shaft 202 and eccentric bearing block 218. Thus, when shaft 202 is rotated in the second direction, eccentric bearing block 218 also rotates in the second direction.
When eccentric bearing block 218 is rotated in the second direction, eccentric bearing block 218 rotates about axis B. Rotation of eccentric bearing block 218 about axis B causes shaft 202 to revolve around axis B. As shown in
As shown in
More specifically, in order to lower converting roller 200, belt 148 rotates shaft 202 in the second direction, which causes the eccentric bearing blocks in eccentric bearing assemblies 210, 212 to rotate about axis B. If the eccentric bearing blocks are rotated in the second direction more or less than 180 degrees, then the upward forces on eccentric bearing assemblies 210, 212 will have enough of a mechanical advantage to automatically rotate eccentric bearing assemblies 210, 212 back to the raised position when belt 148 begins to rotate shaft 202 in the first direction. This is due to the fact that the upward forces will not be acting directly under axis B. However, if the eccentric bearing blocks are rotated 180 degrees in the second direction (e.g., so the upward forces are acting directly under axis B), then the upward forces on eccentric bearing assemblies 210, 212 may not have enough of a mechanical advantage to automatically rotate eccentric bearing assemblies 210, 212 back to the raised position. In such a case, belt 148 may be rotated further in the second direction so that the upward forces will have enough of a mechanical advantage to automatically rotate eccentric bearing assemblies 210, 212 back to the raised position.
In order to ensure that eccentric bearing assemblies 210, 212 are synchronized or to correct any lack of synchronization therebetween, belt 148 may be rotated in the second direction and then in the first direction to reset eccentric bearing assemblies 210, 212. For instance, belt 148 may be rotated 45 degrees in the second direction and then 45 degrees in the first direction. By rotating in the second direction less than 180 degrees, it is assured that the upward forces are not acting directly under axis B. As a result, when belt 148 is rotated in the first direction, the upward forces will have a sufficient mechanical advantage to cause eccentric bearing assemblies 210, 212 to automatically rotate to the raised position.
The forces provided by tensioner 220 also counter most downward forces applied to converting roller 200 by sheet material 104 and longheads 152, thereby preventing eccentric bearing assembly 210 from rotating and lowering converting roller 200 when belt 148 is not rotating in the second direction. However, recess 214, eccentric bearing block 218, and bearing 219 are sized and arranged to prevent eccentric bearing assembly 210 from unintentionally rotating and lowering converting roller 200 in the event that a downward force is applied to converting roller 200 that would overcome the upward force provided by tensioner 220.
During normal operation (e.g., when sufficient downward forces are not applied to converting roller 200 to overcome the upward forces provided by tensioner 220), bearing 219 allows for eccentric bearing assembly 210 to operate as described above. More specifically, as can best be seen in
In the event that a sufficiently large downward force is applied to converting roller 200 to overcome the upward force provided by tensioner 220, converting roller 200 is lowered slightly until eccentric bearing block 218 engages the lower surface of recess 214. As can be seen in
Tensioner 220, and particularly the location of tensioner 220, allows for converting roller 200 to be lowered and raised as well as providing a relatively consistent rotational force to active roller 134a. Tensioner 220 is connected to belt 148 between stepper motor 146 and converting roller 200, as opposed to being connected to belt 148 between stepper motor 146 and active roller 134a. Not having tensioner 220 connected to belt 148 between stepper motor 146 and active roller 134a ensures that belt 148 provides a relatively consistent force to active roller 134a, which allows for relatively consistent feeding of sheet material 104 through converting assembly 114. In contrast, connecting tensioner 220 between stepper motor 146 and converting roller 200 allows for the force applied by belt 148 to converting roller 200 to vary. For instance, when belt rotates converting roller 200 in the first direction, belt 148 provides a given force on converting roller 200. When belt 148 rotates converting roller 200 in the second direction, tensioner 200 reduces the upward force applied to converting roller 200, thereby allowing converting roller 200 to be lowered as described above.
Eccentric bearing assembly 212 on the second end of shaft 202 provides the same functionality as eccentric bearing assembly 210. Specifically, when shaft 202 is rotated in the first direction, eccentric bearing assembly 212 allows shaft 202 and converting roller 200 to rotate to advance sheet material 104. When shaft 202 is rotated in the second direction, eccentric bearing assembly 212 causes shaft 202 and converting roller 200 to be lowered.
Since the second end of shaft 202 is not connected to a belt like belt 148 that provide an upward force, bearing block 208 includes a biasing mechanism to return eccentric bearing assembly 212 to the raised position. As shown in
The arrangement of belt 148, feed rollers 134a, 134b, and converting roller 200 enables converting assembly 114 to utilize a single motor (e.g., stepper motor 146) to perform multiple functions. Specifically, stepper motor 146 may be used to advance sheet material 104 through converting assembly 114 by rotating active roller 134a. Stepper motor 146 may also be used to advance packaging templates 108 out of converting assembly 114 by rotating converting roller 200 in a first direction. Still further, stepper motor 146 may disengage longheads 152 for repositioning by rotating converting roller 200 in a second direction in order to lower converting roller 200.
Using a stepper motor in converting cartridge 130 (as opposed to a servo motor, for example) may provide various benefits. Stepper motors are more cost effective and accommodate a more favorable torque-curve, which enables a slimmer mechanical design. One common short-coming of stepper motors is that they lose much of their torque at higher speeds. In the present context, however, this property is advantageous because it requires a less rigid support structure to handle the higher torque of other motors. The lower torque at high speeds prevents moving components (e.g., crosshead 150, longheads 152, converting roller 200, etc.) from being damaged as a result of high energy collisions. Furthermore, stepper motors immediately stall when speeds are too high, thereby reducing the likelihood of a damaging collision, increasing reliability of components, as well as personal safety.
Once converting assembly 114 has converted fanfold material 104 into packaging templates 108, packaging templates 108 may be fed out of converting assembly 114 through an outfeed guide 230 as shown in in
As shown, outfeed guide 230 includes a lower guide plate 232 and one or more upper guide teeth 234. Packaging templates 108 may be fed between lower guide plate 232 and one or more upper guide teeth 234. As can be seen, lower guide plate 232 and the one or more upper guide teeth 234 are curved and taper towards one another. As a result, lower guide plate 232 and the one or more upper guide teeth 234 cooperate to consistently guide packaging templates 108 out of converting assembly 114 at a predetermined and predictable location.
More specifically, lower guide plate 232 may support packaging templates 108 as they are fed out of converting assembly 114 so that packaging templates 108 consistently exit converting assembly at the same location. Similarly, the one or more upper guide teeth 234 may be configured to deflect and/or redirect packaging templates 108 from moving in the first direction to the second direction. The one or more upper guide teeth 234 may also be configured to maintain packaging templates 108 at a predetermined maximum distance from support structure 112. As illustrated, the one or more upper guide teeth 234 may have a generally arcuate surface that deflect and/or redirect packaging templates 108 toward the second direction so that packaging templates 108 do not extend significantly out of converting assembly 114 in a horizontal direction.
In the illustrated embodiment, a cover 236 is positioned over the one or more upper guide teeth 234. Cover 236 may prevent excess sheet material 104 from exiting converting assembly 114 without being deflected downward by the one or more upper guide teeth 234. Cover 236 may optionally be clear to allow for inspection of outfeed guide 230 as well as the interior of converting assembly 114.
In addition to lower guide plate 232 and the one or more upper guide teeth 234, outfeed guide 230 may also include outfeed extensions 238, 240. Extensions 238 extend from lower guide plate 232 so as to form an angle (e.g., between about 30 degrees and about 100 degrees; about 70 degrees, etc.) with the first direction of movement of sheet material 104. Extensions 238 are generally rigid so as to be able to guide packaging templates 108 horizontally away from support structure 112 and support at least a portion of packaging templates 108 after packaging templates 108 exit converting assembly 114. For instance, extensions 238 may guide and support packaging templates 108 so that packaging templates 108 hang from converting assembly 114 outside of collection bin 110, as shown in
Extensions 240 extend from cover 236 near opposing sides of converting assembly 114. Extensions 240 may be flexible or rigid. In any case, extensions 240 may extend generally straight down from cover 236. Extensions 240 may be configured to deflect and/or direct excess sheet material 104 (such as side material cut off when forming packaging templates 108) into collection bin 110.
Converting assembly 114 may be connected to support structure 112 such that sheet material 104 is fed through converting assembly 114 in a first direction that is not in a horizontal plane. For instance, converting assembly 114 may be connected to support structure 112 such that sheet material 104 is fed through converting assembly 114 at an angle relative to a support surface on which converting machine 100 is positioned. The angle between the first direction and the support surface may be anywhere between 0 degrees to 90 degrees. Furthermore, converting assembly 114 may be movably connected to support structure 112 such that the angle between the first direction and the support surface may be selectively changed.
In a case where converting assembly 114 is connected to support structure 112 at an angle, the angle at which outfeed guide 230 feeds packaging templates 108 out converting assembly 114 may be changed. For instance, converting assembly 114 is angled so that sheet material 104 advances therethrough at an angle of 45 degrees relative to the support surface, outfeed guide 230 may feed packaging templates 108 out of converting assembly 114 in the same direction (e.g., so as to form a 45-degree angle with the support surface). Alternatively, outfeed guide 230 may feed packaging templates 108 out of converting assembly 114 at an angle relative to sheet material 104's direction of movement through converting assembly 114 (e.g., between about 30 degrees and about 100 degrees; about 70 degrees, etc.).
It will be appreciated that relative terms such as “horizontal,” “vertical,” “upper,” “lower,” “raised,” “lowered,” and the like, are used herein simply by way of convenience. Such relative terms are not intended to limit the scope of the present invention. Rather, it will be appreciated that converting assembly 114 may be configured and arranged such that these relative terms require adjustment. For instance, if converting assembly 114 is mounted on support structure 112 at an angle, converting roller 200 may move between a “forward position” and a “backward position” rather than between a “raised position” and a “lowered position.”
Converting assembly 114 may include a cover assembly having one or more covers or doors that allow for ready access to converting cartridge 130. For instance, converting assembly 114 may include covers on one or both sides and/or one or more front and rear covers. The one or more covers may provide ready and convenient access to various portions of converting cartridge 130.
For instance, as shown in
The cover assembly (e.g., covers 242, 244, 246, 248) may also be opened as a unit as shown in
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. Thus, the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a divisional of U.S. application Ser. No. 15/901,089, filed Feb. 21, 2018, entitled “CONVERTING MACHINE”, which is a continuation of U.S. application Ser. No. 14/357,190, filed May 8, 2014, entitled “CONVERTING MACHINE”, which claims priority to and the benefit of PCT Application No. PCT/US2012/064403, filed Nov. 9, 2012, entitled “CONVERTING MACHINE”, which claims the benefit of and priority to the following applications: U.S. Provisional Application No. 61/558,298, filed Nov. 10, 2011, entitled “ELEVATED CONVERTING MACHINE WITH OUTFEED GUIDE”, U.S. Provisional Application No. 61/640,686, filed Apr. 30, 2012, entitled “CONVERTING MACHINE”, and U.S. Provisional Application No. 61/643,267, filed May 5, 2012, entitled “CONVERTING MACHINE”. Each of the foregoing applications is incorporated herein by references in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1809853 | Knowlton | Jun 1931 | A |
2077428 | Mabon | Apr 1937 | A |
2083351 | Sidebotham | Jun 1937 | A |
2181117 | Brenn | Nov 1939 | A |
2256082 | Feurt | Sep 1941 | A |
2353419 | Smithson | Jul 1944 | A |
2449663 | Marcalus | Sep 1948 | A |
2609736 | Montgomery | Sep 1952 | A |
2631509 | Whytlaw | Mar 1953 | A |
2679195 | Whytlaw | May 1954 | A |
2699711 | Mobley | Jan 1955 | A |
2798582 | Monroe et al. | Jul 1957 | A |
2853177 | Engleson et al. | Sep 1958 | A |
2904789 | Radin et al. | Sep 1959 | A |
3057267 | Johnson, Jr. | Oct 1962 | A |
3096692 | Crathern et al. | Jul 1963 | A |
3105419 | La Bombard | Oct 1963 | A |
3108515 | Stohlquist | Oct 1963 | A |
3153991 | Goodrich | Oct 1964 | A |
3218940 | Pearson | Nov 1965 | A |
3285145 | Lieberman | Nov 1966 | A |
3303759 | Burke | Feb 1967 | A |
3308723 | Bergh, Jr. | Mar 1967 | A |
3332207 | Midnight | Jul 1967 | A |
3406611 | Benjamin et al. | Oct 1968 | A |
3418893 | Stohlquist et al. | Dec 1968 | A |
3469508 | Heinz | Sep 1969 | A |
3511496 | Zoglmann | May 1970 | A |
3543469 | Ullman | Dec 1970 | A |
3555776 | Nigrelli et al. | Jan 1971 | A |
3566755 | Smith et al. | Mar 1971 | A |
3611884 | Hottendorf | Oct 1971 | A |
3618479 | Shields | Nov 1971 | A |
3620114 | Chudyk | Nov 1971 | A |
3628408 | Trygve | Dec 1971 | A |
3646418 | Sterns et al. | Feb 1972 | A |
3743154 | Brewitz | Jul 1973 | A |
3744106 | Mayr | Jul 1973 | A |
3756586 | Craft | Sep 1973 | A |
3763750 | Reichert | Oct 1973 | A |
3776109 | Clark et al. | Dec 1973 | A |
3803798 | Clancy | Apr 1974 | A |
3804514 | Jasinski | Apr 1974 | A |
3807726 | Hope et al. | Apr 1974 | A |
3866391 | Puskarz et al. | Feb 1975 | A |
3882764 | Johnson | May 1975 | A |
3886833 | Gunn et al. | Jun 1975 | A |
3891203 | Schiff | Jun 1975 | A |
3912389 | Koichi | Oct 1975 | A |
3913464 | Flaum | Oct 1975 | A |
3949654 | Stehlin | Apr 1976 | A |
3986319 | Puskarz et al. | Oct 1976 | A |
4033217 | Flaum et al. | Jul 1977 | A |
4044658 | Mitchard | Aug 1977 | A |
4052048 | Shirasaka | Oct 1977 | A |
4053152 | Matsumoto | Oct 1977 | A |
4056025 | Rubel | Nov 1977 | A |
4094451 | Wescoat | Jun 1978 | A |
4121506 | Van Grouw | Oct 1978 | A |
4123966 | Buschor | Nov 1978 | A |
4162870 | Storm | Jul 1979 | A |
4164171 | Gorshe et al. | Aug 1979 | A |
4173106 | Leasure et al. | Nov 1979 | A |
4184770 | Pinior | Jan 1980 | A |
4191467 | Schieck | Mar 1980 | A |
4221373 | Mueller | Sep 1980 | A |
4222557 | Wu | Sep 1980 | A |
4224847 | Tokuno | Sep 1980 | A |
4252233 | Joice | Feb 1981 | A |
4261239 | Toboshi et al. | Apr 1981 | A |
4264200 | Tickner et al. | Apr 1981 | A |
4295841 | Ward, Jr. | Oct 1981 | A |
4320960 | Ward et al. | Mar 1982 | A |
4342562 | Froeidh et al. | Aug 1982 | A |
4351461 | Carlsson | Sep 1982 | A |
4368052 | Bitsky et al. | Jan 1983 | A |
4373412 | Gerber et al. | Feb 1983 | A |
4375970 | Murphy et al. | Mar 1983 | A |
4401250 | Carlsson | Aug 1983 | A |
4449349 | Roth | May 1984 | A |
4480827 | Shultz | Nov 1984 | A |
4487596 | Livens et al. | Dec 1984 | A |
4563169 | Virta et al. | Jan 1986 | A |
4578054 | Herrin | Mar 1986 | A |
D286044 | Kando | Oct 1986 | S |
4638696 | Urwyler | Jan 1987 | A |
4674734 | Ibuchi | Jun 1987 | A |
4684360 | Tokuno et al. | Aug 1987 | A |
4695006 | Pool | Sep 1987 | A |
4714946 | Bajgert et al. | Dec 1987 | A |
4743131 | Atwell | May 1988 | A |
4749295 | Bankier et al. | Jun 1988 | A |
4773781 | Bankier | Sep 1988 | A |
4838468 | Lesse | Jun 1989 | A |
4844316 | Keeny | Jul 1989 | A |
4847632 | Norris | Jul 1989 | A |
4878521 | Fredrickson | Nov 1989 | A |
4887412 | Takamura | Dec 1989 | A |
4923188 | Neir | May 1990 | A |
4932930 | Coalier et al. | Jun 1990 | A |
4979932 | Burnside | Dec 1990 | A |
4994008 | Haake et al. | Feb 1991 | A |
5005816 | Stemmler et al. | Apr 1991 | A |
5024641 | Boisseau | Jun 1991 | A |
5030192 | Sager | Jul 1991 | A |
5039242 | Johnson | Aug 1991 | A |
5046716 | Lippold | Sep 1991 | A |
5058872 | Gladow | Oct 1991 | A |
5072641 | Urban et al. | Dec 1991 | A |
5074836 | Fechner et al. | Dec 1991 | A |
5081487 | Hoyer et al. | Jan 1992 | A |
5090281 | Paulson | Feb 1992 | A |
5094660 | Okuzawa | Mar 1992 | A |
5106359 | Lott | Apr 1992 | A |
5111252 | Hamada et al. | May 1992 | A |
5116034 | Trask et al. | May 1992 | A |
5118093 | Makiura et al. | Jun 1992 | A |
5120279 | Rabe | Jun 1992 | A |
5120297 | Adami | Jun 1992 | A |
5123890 | Green, Jr. | Jun 1992 | A |
5123894 | Bergeman et al. | Jun 1992 | A |
5137172 | Wagner et al. | Aug 1992 | A |
5137174 | Bell | Aug 1992 | A |
5148654 | Kisters | Sep 1992 | A |
5154041 | Schneider | Oct 1992 | A |
5157903 | Nakashima et al. | Oct 1992 | A |
5197366 | Paulson | Mar 1993 | A |
5240243 | Gompertz et al. | Aug 1993 | A |
5241353 | Maeshima et al. | Aug 1993 | A |
5259255 | Urban et al. | Nov 1993 | A |
5263785 | Negoro et al. | Nov 1993 | A |
D344751 | Keong | Mar 1994 | S |
5305993 | Staeb | Apr 1994 | A |
5321464 | Jessen et al. | Jun 1994 | A |
5335777 | Murphy et al. | Aug 1994 | A |
5358345 | Damitio | Oct 1994 | A |
5369939 | Moen et al. | Dec 1994 | A |
5375390 | Frigo et al. | Dec 1994 | A |
5397423 | Bantz et al. | Mar 1995 | A |
5411252 | Lowell | May 1995 | A |
5531661 | Moncrief | Jul 1996 | A |
5584633 | Scharer | Dec 1996 | A |
5586758 | Kimura et al. | Dec 1996 | A |
5624369 | Bidlack et al. | Apr 1997 | A |
5667468 | Bandura | Sep 1997 | A |
5671593 | Ginestra et al. | Sep 1997 | A |
5716313 | Sigrist et al. | Feb 1998 | A |
5727725 | Paskvich | Mar 1998 | A |
5767975 | Ahlen | Jun 1998 | A |
5836498 | Turek | Nov 1998 | A |
5865918 | Franklin et al. | Feb 1999 | A |
5887867 | Takahashi et al. | Mar 1999 | A |
5902223 | Simmons | May 1999 | A |
5927702 | Ishii et al. | Jul 1999 | A |
5941451 | Dexter | Aug 1999 | A |
5964686 | Bidlack et al. | Oct 1999 | A |
6000525 | Frulio | Dec 1999 | A |
6071223 | Reider et al. | Jun 2000 | A |
6076764 | Robinson | Jun 2000 | A |
6107579 | Kinnemann | Aug 2000 | A |
6113525 | Waechter | Sep 2000 | A |
6135438 | Newman et al. | Oct 2000 | A |
6164045 | Focke et al. | Dec 2000 | A |
6179765 | Toth | Jan 2001 | B1 |
6189933 | Felderman | Feb 2001 | B1 |
6244436 | Boriani et al. | Jun 2001 | B1 |
6245004 | Waters | Jun 2001 | B1 |
6321650 | Ogawa et al. | Nov 2001 | B1 |
6397557 | Bassissi et al. | Jun 2002 | B1 |
6428000 | Hara | Aug 2002 | B1 |
6471154 | Toth | Oct 2002 | B2 |
6553207 | Tsusaka et al. | Apr 2003 | B2 |
6568865 | Fujioka et al. | May 2003 | B1 |
6673001 | Toth | Jan 2004 | B2 |
6690476 | Hren | Feb 2004 | B1 |
6709177 | Sugimura | Mar 2004 | B1 |
6830328 | Cuyler, Jr. | Dec 2004 | B2 |
6837135 | Michalski | Jan 2005 | B2 |
6840898 | Pettersson | Jan 2005 | B2 |
6910997 | Yampolsky et al. | Jun 2005 | B1 |
6968859 | Nagano et al. | Nov 2005 | B1 |
7060016 | Cipolli | Jun 2006 | B2 |
7100811 | Pettersson et al. | Sep 2006 | B2 |
7115086 | Campbell, Jr. | Oct 2006 | B1 |
7121543 | Fujioka | Oct 2006 | B2 |
7201089 | Richter | Apr 2007 | B2 |
7237969 | Bartman | Jul 2007 | B2 |
7537557 | Holler | May 2009 | B2 |
7637857 | Coullery et al. | Dec 2009 | B2 |
7641190 | Hara et al. | Jan 2010 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7648451 | Calugi | Jan 2010 | B2 |
7648596 | Sharpe et al. | Jan 2010 | B2 |
7690099 | Bapst et al. | Apr 2010 | B2 |
7735299 | Cash, III | Jun 2010 | B2 |
7739856 | Cash, III | Jun 2010 | B2 |
7997578 | Saito et al. | Aug 2011 | B2 |
8052138 | Wang | Nov 2011 | B2 |
8141868 | Wang | Mar 2012 | B1 |
8646248 | Iwasa et al. | Feb 2014 | B2 |
D703246 | Pettersson et al. | Apr 2014 | S |
8999108 | Nagao et al. | Apr 2015 | B2 |
9027315 | Tsutsumi et al. | May 2015 | B2 |
9069151 | Conner | Jun 2015 | B2 |
9120284 | Capoia | Sep 2015 | B2 |
9199794 | Nadachi et al. | Dec 2015 | B2 |
9216867 | Aoyama | Dec 2015 | B2 |
9329565 | Osaki | May 2016 | B2 |
9352526 | Pettersson | May 2016 | B2 |
9434496 | Sytema | Sep 2016 | B2 |
9771231 | Pettersson | Sep 2017 | B2 |
9924502 | Choi | Mar 2018 | B2 |
9969142 | Pettersson et al. | May 2018 | B2 |
10093438 | Pettersson | Oct 2018 | B2 |
10155352 | Sytema et al. | Dec 2018 | B2 |
10286621 | Toro | May 2019 | B2 |
10583943 | Feijen et al. | Mar 2020 | B2 |
10836516 | Pettersson | Nov 2020 | B2 |
10836517 | Ponti | Nov 2020 | B2 |
20020017754 | Kang | Feb 2002 | A1 |
20020066683 | Sanders | Jun 2002 | A1 |
20020091050 | Bacciottini et al. | Jul 2002 | A1 |
20020108476 | Guidetti | Aug 2002 | A1 |
20020115548 | Lin et al. | Aug 2002 | A1 |
20020125712 | Felderman | Sep 2002 | A1 |
20020139890 | Toth | Oct 2002 | A1 |
20030102244 | Sanders | Jun 2003 | A1 |
20030104911 | Toth et al. | Jun 2003 | A1 |
20030217628 | Michalski | Nov 2003 | A1 |
20040060264 | Miller | Apr 2004 | A1 |
20040082453 | Pettersson | Apr 2004 | A1 |
20040092374 | Cheng | May 2004 | A1 |
20040144555 | Buekers | Jul 2004 | A1 |
20040173068 | Adachi | Sep 2004 | A1 |
20040198577 | Blumle | Oct 2004 | A1 |
20040214703 | Berens et al. | Oct 2004 | A1 |
20040261365 | White | Dec 2004 | A1 |
20050079965 | Moshier et al. | Apr 2005 | A1 |
20050103923 | Pettersson et al. | May 2005 | A1 |
20050215409 | Abramson et al. | Sep 2005 | A1 |
20050280202 | Vila et al. | Dec 2005 | A1 |
20060082044 | Aida | Apr 2006 | A1 |
20060178248 | Coullery et al. | Aug 2006 | A1 |
20060180438 | Mosli et al. | Aug 2006 | A1 |
20060180991 | Nakahata et al. | Aug 2006 | A1 |
20060181008 | Van et al. | Aug 2006 | A1 |
20070079575 | Monti | Apr 2007 | A1 |
20070227927 | Coltri-Johnson | Oct 2007 | A1 |
20070228119 | Barner | Oct 2007 | A1 |
20070287623 | Carlson et al. | Dec 2007 | A1 |
20070289253 | Miller | Dec 2007 | A1 |
20080020916 | Magnell | Jan 2008 | A1 |
20080037273 | Muehlemann et al. | Feb 2008 | A1 |
20080066632 | Raueiser | Mar 2008 | A1 |
20080115641 | Freyburger et al. | May 2008 | A1 |
20080148917 | Pettersson | Jun 2008 | A1 |
20080300120 | Sato | Dec 2008 | A1 |
20090062098 | Inoue et al. | Mar 2009 | A1 |
20090178528 | Adami | Jul 2009 | A1 |
20090199527 | Wehr et al. | Aug 2009 | A1 |
20100011924 | Bernreuter | Jan 2010 | A1 |
20100012628 | Koshy et al. | Jan 2010 | A1 |
20100041534 | Harding et al. | Feb 2010 | A1 |
20100111584 | Shiohara et al. | May 2010 | A1 |
20100206582 | Meyyappan et al. | Aug 2010 | A1 |
20100210439 | Goto | Aug 2010 | A1 |
20110026999 | Kohira | Feb 2011 | A1 |
20110053746 | Desertot et al. | Mar 2011 | A1 |
20110092351 | Hatano et al. | Apr 2011 | A1 |
20110099782 | Schonberger et al. | May 2011 | A1 |
20110110749 | Carter et al. | May 2011 | A1 |
20110171002 | Pettersson | Jul 2011 | A1 |
20110229191 | Nomi | Sep 2011 | A1 |
20110230325 | Harding et al. | Sep 2011 | A1 |
20110240707 | Beguin et al. | Oct 2011 | A1 |
20110269995 | Olbert et al. | Nov 2011 | A1 |
20110283855 | Kwarta et al. | Nov 2011 | A1 |
20110319242 | Pettersson | Dec 2011 | A1 |
20120021884 | Musha | Jan 2012 | A1 |
20120037680 | Ito | Feb 2012 | A1 |
20120106963 | Huang et al. | May 2012 | A1 |
20120122640 | Pazdernik et al. | May 2012 | A1 |
20120129670 | Pettersson et al. | May 2012 | A1 |
20120139670 | Yamagata et al. | Jun 2012 | A1 |
20120142512 | Keller | Jun 2012 | A1 |
20120242512 | Horstemeyer | Sep 2012 | A1 |
20120275838 | Imazu et al. | Nov 2012 | A1 |
20120319920 | Athley et al. | Dec 2012 | A1 |
20120328253 | Hurley et al. | Dec 2012 | A1 |
20130000252 | Pettersson et al. | Jan 2013 | A1 |
20130045847 | Capoia | Feb 2013 | A1 |
20130104718 | Tai | May 2013 | A1 |
20130108227 | Conner | May 2013 | A1 |
20130108408 | Saison et al. | May 2013 | A1 |
20130130877 | Su | May 2013 | A1 |
20130146355 | Strasser et al. | Jun 2013 | A1 |
20130210597 | Pettersson | Aug 2013 | A1 |
20130294735 | Burris et al. | Nov 2013 | A1 |
20130333538 | Long et al. | Dec 2013 | A1 |
20140078635 | Conner et al. | Mar 2014 | A1 |
20140091511 | Martin | Apr 2014 | A1 |
20140100100 | Izumichi | Apr 2014 | A1 |
20140101929 | Kim et al. | Apr 2014 | A1 |
20140121093 | Braschoss et al. | May 2014 | A1 |
20140140671 | Islam | May 2014 | A1 |
20140141956 | Suzuki et al. | May 2014 | A1 |
20140171283 | Furuhashi et al. | Jun 2014 | A1 |
20140179504 | Nakada et al. | Jun 2014 | A1 |
20140206518 | Hidaka et al. | Jul 2014 | A1 |
20140315701 | Pettersson | Oct 2014 | A1 |
20140316336 | Hawasheen | Oct 2014 | A1 |
20140318336 | De Marco et al. | Oct 2014 | A1 |
20140336026 | Pettersson | Nov 2014 | A1 |
20140357463 | Kojima | Dec 2014 | A1 |
20150018189 | Pettersson et al. | Jan 2015 | A1 |
20150019387 | Pettersson et al. | Jan 2015 | A1 |
20150045197 | Sugiyama et al. | Feb 2015 | A1 |
20150053349 | Mori et al. | Feb 2015 | A1 |
20150055926 | Strasser et al. | Feb 2015 | A1 |
20150103923 | Ramasubramonian et al. | Apr 2015 | A1 |
20150148210 | Sibthorpe | May 2015 | A1 |
20150155697 | Loveless et al. | Jun 2015 | A1 |
20150224731 | Ponti | Aug 2015 | A1 |
20150273897 | Kato et al. | Oct 2015 | A1 |
20150355429 | Villegas et al. | Dec 2015 | A1 |
20150360433 | Feijen et al. | Dec 2015 | A1 |
20150360801 | Sytema | Dec 2015 | A1 |
20160001441 | Osterhout et al. | Jan 2016 | A1 |
20160049782 | Strasser et al. | Feb 2016 | A1 |
20160122044 | Evers et al. | May 2016 | A1 |
20160184142 | Vanvalkenburgh et al. | Jun 2016 | A1 |
20160185065 | Sytema et al. | Jun 2016 | A1 |
20160185475 | Pettersson | Jun 2016 | A1 |
20160229145 | Pettersson et al. | Aug 2016 | A1 |
20160241468 | Sabella et al. | Aug 2016 | A1 |
20160340067 | Winkler et al. | Nov 2016 | A1 |
20170057190 | Toro | Mar 2017 | A1 |
20170190134 | Van et al. | Jul 2017 | A1 |
20170355166 | Jonker | Dec 2017 | A1 |
20170361560 | Osterhout | Dec 2017 | A1 |
20180050833 | Sytema et al. | Feb 2018 | A1 |
20180178476 | Pettersson et al. | Jun 2018 | A1 |
20180201465 | Osterhout | Jul 2018 | A1 |
20180265228 | Hagestedt et al. | Sep 2018 | A1 |
20190002137 | Pettersson | Jan 2019 | A1 |
20190184670 | Davies et al. | Jun 2019 | A1 |
20190308383 | Provoost et al. | Oct 2019 | A1 |
20190308761 | Provoost et al. | Oct 2019 | A1 |
20190329513 | Pettersson | Oct 2019 | A1 |
20190389611 | Pettersson | Dec 2019 | A1 |
20200031506 | Ponti | Jan 2020 | A1 |
20200101686 | Fredander et al. | Apr 2020 | A1 |
20200407087 | Pettersson | Dec 2020 | A1 |
20210001583 | Osterhout | Jan 2021 | A1 |
20210039347 | Pettersson | Feb 2021 | A1 |
20210261281 | Engleman et al. | Aug 2021 | A1 |
20210370633 | Provoost et al. | Dec 2021 | A1 |
20210371229 | Osterhout | Dec 2021 | A1 |
20220153462 | Provoost et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2164350 | May 1994 | CN |
1191833 | Sep 1998 | CN |
1275515 | Dec 2000 | CN |
1366487 | Aug 2002 | CN |
1449966 | Oct 2003 | CN |
1494502 | May 2004 | CN |
1876361 | Dec 2006 | CN |
2925862 | Jul 2007 | CN |
201941185 | Aug 2011 | CN |
201990294 | Sep 2011 | CN |
102264532 | Nov 2011 | CN |
102371705 | Mar 2012 | CN |
102574654 | Jul 2012 | CN |
202412794 | Sep 2012 | CN |
102753442 | Oct 2012 | CN |
102756943 | Oct 2012 | CN |
102791581 | Nov 2012 | CN |
103534069 | Jan 2014 | CN |
104044166 | Sep 2014 | CN |
104169073 | Nov 2014 | CN |
104185538 | Dec 2014 | CN |
102941592 | Apr 2015 | CN |
104812560 | Jul 2015 | CN |
104890208 | Sep 2015 | CN |
104985868 | Oct 2015 | CN |
204773785 | Nov 2015 | CN |
106079570 | Nov 2016 | CN |
107614253 | Jan 2018 | CN |
1082227 | May 1960 | DE |
1212854 | Mar 1966 | DE |
2700004 | Jul 1978 | DE |
2819000 | Nov 1978 | DE |
3343523 | Jun 1985 | DE |
3825506 | Feb 1990 | DE |
19541061 | Nov 1996 | DE |
10355544 | Jun 2005 | DE |
102005063193 | Jul 2007 | DE |
102008035278 | Feb 2010 | DE |
0030366 | Jun 1981 | EP |
0234228 | Sep 1987 | EP |
0359005 | Mar 1990 | EP |
0650827 | May 1995 | EP |
0889779 | Jan 1999 | EP |
0903219 | Mar 1999 | EP |
1065162 | Jan 2001 | EP |
1223107 | Jul 2002 | EP |
1373112 | Jan 2004 | EP |
1428759 | Jun 2004 | EP |
1997736 | Dec 2008 | EP |
1497049 | Mar 2010 | EP |
2228206 | Sep 2010 | EP |
2377764 | Oct 2011 | EP |
3231594 | Oct 2017 | EP |
0428967 | Sep 1911 | FR |
2280484 | Feb 1976 | FR |
2411700 | Jul 1979 | FR |
2626642 | Aug 1989 | FR |
2721301 | Dec 1995 | FR |
2808722 | Nov 2001 | FR |
2814393 | Mar 2002 | FR |
2976561 | Dec 2012 | FR |
0166622 | Jul 1921 | GB |
0983946 | Feb 1965 | GB |
1362060 | Jul 1974 | GB |
1546789 | May 1979 | GB |
49-099239 | Sep 1974 | JP |
50-078616 | Jun 1975 | JP |
51-027619 | Mar 1976 | JP |
55-057984 | Apr 1980 | JP |
56-089937 | Jul 1981 | JP |
59-176836 | Oct 1984 | JP |
59-198243 | Nov 1984 | JP |
61-118720 | Jun 1986 | JP |
62-172032 | Oct 1987 | JP |
01-133164 | May 1989 | JP |
03-070927 | Mar 1991 | JP |
3089399 | Sep 1991 | JP |
06-123606 | May 1994 | JP |
06-142585 | May 1994 | JP |
07-156305 | Jun 1995 | JP |
08-132388 | May 1996 | JP |
08-238690 | Sep 1996 | JP |
08-333036 | Dec 1996 | JP |
09-506847 | Jul 1997 | JP |
09-510548 | Oct 1997 | JP |
11-320492 | Nov 1999 | JP |
2000-323324 | Nov 2000 | JP |
2003-079446 | Mar 2003 | JP |
2003-112849 | Apr 2003 | JP |
2003-165167 | Jun 2003 | JP |
2003-194516 | Jul 2003 | JP |
2004-330351 | Nov 2004 | JP |
2005-067019 | Mar 2005 | JP |
2005-219798 | Aug 2005 | JP |
2006-289914 | Oct 2006 | JP |
2007-331810 | Dec 2007 | JP |
2008-254789 | Oct 2008 | JP |
2009-023074 | Feb 2009 | JP |
2009-132049 | Jun 2009 | JP |
2010-012628 | Jan 2010 | JP |
2011-053284 | Mar 2011 | JP |
2011-520674 | Jul 2011 | JP |
2011-230385 | Nov 2011 | JP |
2015-502273 | Jan 2015 | JP |
2016-074133 | May 2016 | JP |
2020-504038 | Feb 2020 | JP |
2015030 | Jun 1994 | RU |
2004136918 | May 2006 | RU |
2334668 | Sep 2008 | RU |
2345893 | Feb 2009 | RU |
2398674 | Sep 2010 | RU |
2014123534 | Dec 2015 | RU |
2014123562 | Dec 2015 | RU |
450829 | Aug 1987 | SE |
0450829 | Aug 1987 | SE |
515630 | Sep 2001 | SE |
40025 | Dec 1934 | SU |
992220 | Jan 1983 | SU |
1054863 | Nov 1983 | SU |
1121156 | Oct 1984 | SU |
1676825 | Sep 1991 | SU |
1718783 | Mar 1992 | SU |
1756211 | Aug 1992 | SU |
394741 | Jun 2000 | TW |
WO-9524298 | Sep 1995 | WO |
9610518 | Apr 1996 | WO |
9614773 | May 1996 | WO |
9731773 | Sep 1997 | WO |
9917923 | Apr 1999 | WO |
0021713 | Apr 2000 | WO |
0104017 | Jan 2001 | WO |
0185408 | Nov 2001 | WO |
0279062 | Oct 2002 | WO |
0389163 | Oct 2003 | WO |
0397340 | Nov 2003 | WO |
2009093936 | Jul 2009 | WO |
2010091043 | Aug 2010 | WO |
2011007237 | Jan 2011 | WO |
2011100078 | Aug 2011 | WO |
2011135433 | Nov 2011 | WO |
WO-2011135433 | Nov 2011 | WO |
2012003167 | Jan 2012 | WO |
2013071073 | May 2013 | WO |
2013071080 | May 2013 | WO |
2013106180 | Jul 2013 | WO |
2013114057 | Aug 2013 | WO |
2014048934 | Apr 2014 | WO |
2014117816 | Aug 2014 | WO |
2014117817 | Aug 2014 | WO |
2014188010 | Nov 2014 | WO |
2015173745 | Nov 2015 | WO |
2016176271 | Nov 2016 | WO |
2017203399 | Nov 2017 | WO |
2017203401 | Nov 2017 | WO |
2017218296 | Dec 2017 | WO |
2017218297 | Dec 2017 | WO |
Entry |
---|
Definition of CAM, per “Oxford Languages”, retreived on Sep. 29, 2022 from (abridged) URL: https://tinyurl.com/17082294URL1 (Year: 2022). |
Definition of Against, per Merriam-Webster, retrieved on Oct. 4, 2022 from URL: https://www.merriam-webster.com/dictionary/against (Year: 2022). |
International Search Report and Written Opinion for application No. PCT/US2012/070719 dated Feb. 25, 2013. |
Final Office Action received for U.S. Appl. No. 13/147,787, dated Apr. 17, 2015. |
Final Office Action received for U.S. Appl. No. 13/147,787, dated Feb. 16, 2016. |
Final Office Action received for U.S. Appl. No. 13/147,787, dated Mar. 7, 2017. |
Final Office Action received for U.S. Appl. No. 14/357,183, dated Nov. 12, 2015. |
Final Office Action received for U.S. Appl. No. 14/357,190, dated Aug. 1, 2017. |
Final Office Action received for U.S. Appl. No. 14/370,729, dated Jul. 12, 2017. |
International Search Report and Written Opinion for application No. PCT/US2017/036603 dated Oct. 18, 2017. |
International Search Report and Written Opinion for application No. PCT/US2017/036606 dated Oct. 24, 2017. |
International Search Report and Written Opinion for corresponding PCT Application No. PCT/IB2015/054179, dated Aug. 28, 2015, 13 pages. |
International Search Report and Written Opinion for PCT/US18/14275 dated Apr. 4, 2018. |
International Search Report and Written Opinion for PCT/US19/62696 dated Feb. 4, 2020. |
International Search Report and Written Opinion for PCT/US2015/67375 dated Mar. 11, 2016. |
International Search Report and Written Opinion for PCT/US2019/049102 dated Dec. 2, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2010/022983 dated Apr. 13, 2010. |
International Search Report and Written Opinion issued in PCT/US2019/038142 dated Aug. 19, 2019. |
International Search Report and Written Opinion PCT/IB2019/052793 dated Nov. 11, 2019. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/020928, dated Jun. 7, 2018, 9 pages. |
International Search Report and Written Opinion, PCT/US2012/064403, US Search Authority, Completed Mar. 26, 2013, dated Apr. 8, 2013. |
International Search Report and Written Opinion, PCT/US2012/064414, US Search Authority, Completed Jan. 4, 2013, dated Jan. 25, 2013. |
International Search Report for PCT/US2011/042096 dated Oct. 28, 2011. |
Non-Final Office Action received for U.S. Appl. No. 16/310,406, dated Aug. 19, 2020, 22 pages. |
Office Action received for U.S. Appl. No. 13/147,787, dated Aug. 27, 2014. |
Office Action received for U.S. Appl. No. 13/147,787, dated Oct. 28, 2016. |
Office Action received for U.S. Appl. No. 13/147,787, dated Sep. 30, 2015. |
Office Action received for U.S. Appl. No. 13/805,602, dated Dec. 2, 2015. |
Office Action received for U.S. Appl. No. 14/357,183, dated Jul. 16, 2015. |
Office Action received for U.S. Appl. No. 14/357,190, dated Feb. 17, 2017. |
Office Action received for U.S. Appl. No. 14/370,729, dated Dec. 19, 2017. |
Office Action received for U.S. Appl. No. 14/370,729, dated Jan. 26, 2017. |
Office Action received for U.S. Appl. No. 14/970,224, dated May 30, 2018. |
Office Action received for U.S. Appl. No. 15/616,688, dated Mar. 19, 2020. |
Office Action received for U.S. Appl. No. 15/872,770, dated Mar. 27, 2020. |
Office Action received for U.S. Appl. No. 15/901,089, dated Apr. 13, 2020. |
Office Action received for U.S. Appl. No. 16/109,261, dated Apr. 28, 2020. |
Office Action received for U.S. Appl. No. 29/419,922, dated Aug. 6, 2013. |
U.S. Provisional Application mailed on Jan. 18, 2017, filed by Osterhout, U.S. Appl. No. 62/447,714. |
U.S. Appl. No. 16/435,252, filed Jun. 7, 2019. |
Non-Final Office Action received for U.S. Appl. No. 16/375,579, dated Feb. 18, 2021, 12 pages. |
Final Office Action received for U.S. Appl. No. 16/619,818, dated Feb. 3, 2022, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/375,588, dated Jul. 2, 2021, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/619,818, dated Aug. 31, 2021, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/023,088, dated May 10, 2022, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/252,722, dated Sep. 9, 2022, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 15/901,089, dated Jan. 31, 2022, 9 pages. |
Final Office Action received for U.S. Appl. No. 17/023,088, dated Nov. 8, 2022, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/587,836, dated Mar. 1, 2023, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20210039347 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
61643267 | May 2012 | US | |
61640686 | Apr 2012 | US | |
61558298 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15901089 | Feb 2018 | US |
Child | 17082294 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14357190 | US | |
Child | 15901089 | US |