The present invention relates to information technology, and more particularly to converting text into speech for speech recognition.
Up to now, LVCSR (Large Vocabulary Continuous Speech Recognition) and NLU (natural language processing) still cannot meet the requirements of accuracy and performance of human-machine speech communication in real life.
When the data source content changes in a speech-enabled application, for example, in the speech control application based on web page, the grammar must be generated dynamically according to the data source content.
During speech recognition, how to reduce computational complexity and improve the recognition efficiency is a problem to be confronted.
According to a first aspect of the present invention, the present invention provides a method of converting a text into a speech, comprising: parsing a data source in a text form to obtain partial word lists of the data source; compiling the partial word lists to obtain phoneme graphs corresponding, respectively, to the partial word lists; combining the obtained phoneme graphs; and conducting speech recognition according to the combination results.
According to a second aspect of the present invention, the present invention provides a system for converting a text form into a speech, comprising: a data parser, configured to parse a data source in the text form to obtain partial word lists of the data source; one or more compilers, configured to compile the partial word lists to obtain phoneme graphs corresponding, respectively, to the partial word lists; a combiner, configured to combine the obtained phoneme graphs; and a speech recognizer, configured to conduct speech recognition according to the combination results.
According to the present invention, computational complexity may be reduced and the recognition efficiency may be improved during speech recognition.
Other objectives and effects of the present invention will become clearer and easier to understand with more comprehensive understanding of the present invention in conjunction with the explanations of the following accompanying drawings, wherein:
In all of the above figures, like reference numbers denote identical, similar, or corresponding features or functions.
Specific embodiments of the present invention are described herein with reference to the drawings.
The basic idea of the present invention is obtaining partial word lists of a data source in a text form by parsing the data source in parallel or in series; then compiling the partial word lists to obtain phoneme graphs corresponding, respectively, to the partial word lists; then combining the obtained phoneme graphs; and then conducting speech recognition according to the combination results.
As shown in
It should be understood by those skilled in the art that the term “word”, as used herein, represents a common grammatical element such as a character, a word, and/or a phrase. A partial word list refers to part of the word list obtained by parsing the whole data source.
In the first embodiment of the present invention, the data parser 110 parses the data source in series, after obtaining a partial word list of the data source, the data parser 110 invokes a compiler (e.g., the compiler 120-1) to compile the partial word list to obtain a phoneme graph, and then the data parser 110 continues to parse the remaining data source to obtain a next partial word list.
In the first embodiment, the system 100 further comprises a judger 160 for judging whether combination results have sufficient information to conduct speech recognition. If there is sufficient information—for example, if there is a complete sentence—then the speech recognizer 140 starts the speech recognition.
In the first embodiment, each compiler 120 in the compilers 120-1, 120-2, 120-3, . . . 120-N-1, 120-N can comprise a grammar obtainer 1201 for applying a grammar template with respect to a partial word list to obtain a grammar corresponding to the partial word list; a determiner 1202 for determining a phoneme list of the grammar; a creator 1203 for creating a corresponding phoneme tree according to the phoneme list; and an optimizer 1204 for optimizing the phoneme tree to obtain a corresponding phoneme graph.
The grammar template generally comprises contents describing what the grammar should be like.
The following is an example of a grammar template:
The grammar specifically describes the contents of the partial word list, for example, whether the contents of the partial word list is English or Chinese, and whether the English (if any) is American English or British English.
An example of the grammar of a partial word list is presented as below:
The phoneme list describes how the word is pronounced. The phoneme list can be determined from a phoneme pool according to the grammar.
In one word, those skilled in the art can understand the meaning of terms such as the grammar template, the grammar, the phoneme list and phoneme tree, completely. For the sake of conciseness, they are not described in more detail herein.
During optimization of the phoneme tree, identical nodes in the phoneme tree are combined so as to obtain the phoneme graph.
Certainly, those skilled in the art can understand that in the first embodiment, if the processing speed of the compiler is fast enough—i.e., when the data parser 110 sends a partial word list to the compiler, such that compilation of another partial word list preceding said partial word list is already finished—then only one compiler is needed.
In addition, those skilled in the art can understand that the optimizer is not necessary in the compiler 120 in some cases.
The system 200 differs from the system 100 shown in
As shown in
In the third embodiment, the data source is parsed in series, and after a partial word list is obtained, the partial word list is compiled to obtain a phoneme graph. The remaining data source is then parsed continually to obtain a next partial word list.
In the third embodiment, the method further comprises step S360 for judging whether combination results have sufficient information to conduct speech recognition before combination of the phoneme graphs is finished. If there is sufficient information—for example, if there is a complete sentence—then speech recognition will be started.
In the third embodiment, before combination of the obtained phoneme graphs is finished, if the current data source changes, then combination of the obtained phoneme graphs is continued and the combination results are cached.
In the third embodiment, the method can further comprise step S350 for optimizing the combination results.
In the third embodiment, the step of compiling partial word lists to obtain phoneme graphs corresponding, respectively, to the partial word lists can comprises step S3201 of applying a grammar template with respect to a partial word list to obtain a grammar corresponding to the partial word list; step S3202 of determining a phoneme list of the grammar; step S3203 of creating a corresponding phoneme tree according to the phoneme list; and step S3204 of optimizing the phoneme tree to obtain a corresponding phoneme graph.
Certainly, those skilled in the art can understand that the step of optimizing the phoneme tree to obtain a corresponding phoneme graph is not necessary in some cases.
The method 400 differs from the method 300 shown in
Embodiments of the present invention will now be described in more detail with reference to an example.
In this example, the data parser 110 parses the data source in series. After obtaining a first partial word list which includes the content Red flag, the data parser 110 invokes a first compiler 120-1 to compile the first partial word list to obtain a first phoneme graph.
In this example, the grammar obtained by the first compiler 120-1 is as below:
The determined phoneme list is as below:
The created phoneme tree is as shown in
Since in this simple example, the phoneme tree shown in
Further, since this is a first obtained phoneme graph, no combination occurs at this time.
In addition, provided that the first phoneme graph does not have sufficient information for speech recognition, speech recognition does not happen at this time.
As the data parser 110 continues to parse the remaining data source, it obtains a second partial word list which includes the content White house, and then invokes a second compiler 120-2 to compile the second partial word list to obtain a second phoneme graph.
In this example, the grammar obtained by the second compiler 120-2 is as below:
The determined phoneme list is as below:
The created phoneme tree is as shown in
Since in this simple example, the phoneme tree shown in
Further, since this is a second obtained phoneme graph and the first phoneme graph is obtained previously, combination occurs at this time. The combination result is as shown in
In addition, provided that the result from combining the first phoneme graph and the second phoneme graph already has sufficient information for speech recognition, speech recognition happens at this time.
Besides, in this example, the combination result of the first phoneme graph and the second phoneme graph is already optimized at this time, so optimization will not be conducted for the combination result at this time.
As the data parser 110 continues to parse the remaining data source, it obtains a third partial word list (the last one) which includes the content Yellow flag, and then it invokes a third compiler 120-3 to compile the third partial word list to obtain a third phoneme graph.
In this example, the grammar obtained by the third compiler 120-3 is as below:
The determined phoneme list is as below:
The created phoneme tree is as shown in
Since in this simple example, the phoneme tree shown in
Further, since this is a third obtained phoneme graph and the first and second phoneme graphs are obtained previously, combination occurs at this time. The combination result is as shown in
In addition, at this time the combination result of the first phoneme graph, the second phoneme graph, and the third phoneme graph is not optimal because two branches have identical nodes F, L, AE, and GD. Therefore, the combination result is optimized at this time. The optimized combination result is as shown in
Additionally, before the third obtained phoneme graph is combined, if the data source changes—for example, if the data source is a web page and a user clicks a link on the web page—then combination of the third obtained phoneme graph is continued and the combination result is cached so that when the user returns back to the above web page, the combined phoneme graph can continue to be used.
According to the present invention, the phoneme graph of the partial word list needs to be determined each time, and therefore the computational complexity can be reduced. Further, before combination of the obtained phoneme graphs is finished, once a combination result already has sufficient information for speech recognition, the speech recognition will begin, thereby improving the performance of the speech recognition.
It should be noted that some more specific technological details which are publicly known for those skilled in the art and are requisite for realization of the present invention are omitted in the above description to make the present invention more easily understood.
The description of the present invention is provided for illustration and depiction purpose, not for listing all the embodiments or limiting the present invention to the disclosed form. It is understood by those skilled in the art that many modifications and variations are obvious based on the teachings provided herein.
Therefore, the above preferred embodiments are selected and described to better illustrate principles of the present invention and actual applications thereof, and to enable those having ordinary skill in the art to understand that without departure from the essence of the present invention, all the modifications and variations fall within the scope of protection of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0580334 | Nov 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5384893 | Hutchins | Jan 1995 | A |
5428707 | Gould et al. | Jun 1995 | A |
5724481 | Garberg et al. | Mar 1998 | A |
5917891 | Will | Jun 1999 | A |
5995930 | Hab-Umbach et al. | Nov 1999 | A |
6167117 | Will | Dec 2000 | A |
6260014 | Bahl et al. | Jul 2001 | B1 |
6377925 | Greene et al. | Apr 2002 | B1 |
6405168 | Bayya et al. | Jun 2002 | B1 |
6622121 | Crepy et al. | Sep 2003 | B1 |
6823309 | Kato et al. | Nov 2004 | B1 |
6870914 | Bossemeyer et al. | Mar 2005 | B1 |
7124082 | Freedman | Oct 2006 | B2 |
7324945 | Butzberger et al. | Jan 2008 | B2 |
7346507 | Natarajan et al. | Mar 2008 | B1 |
7577569 | Roth et al. | Aug 2009 | B2 |
7706513 | Bossemeyer et al. | Apr 2010 | B2 |
7844459 | Budde et al. | Nov 2010 | B2 |
7855817 | Nakatsu | Dec 2010 | B2 |
7885817 | Paek et al. | Feb 2011 | B2 |
8005674 | Janke et al. | Aug 2011 | B2 |
8140336 | Saffer | Mar 2012 | B2 |
20070124142 | Mukherjee | May 2007 | A1 |
20080126093 | Sivadas | May 2008 | A1 |
20080126094 | Janke et al. | May 2008 | A1 |
20100030561 | Mori et al. | Feb 2010 | A1 |
20100324894 | Potkonjak | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1979637 | Jun 2007 | CN |
101470701 | Jul 2009 | CN |
Entry |
---|
Schalkwyk, Johan, et al., “Speech Recognition with Dynamic Grammars Using Finite-State Transducers”, in Proceedings of Eurospeech (2003), Geneva, pp. 1969-1972. |
Guo Kang Fu et al., U.S. Appl. No. 13/287,400, filed Nov. 2, 2011, Office Action, Nov. 12, 2012, 8 pages. |
Foreign Office Action in CN 201010580334.2, issued on Sep. 10, 2013, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20120166197 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13287400 | Nov 2011 | US |
Child | 13411614 | US |