This application is the U.S. national stage application of PCT Patent Application No. PCT/RU2013/000914, filed on Oct. 16, 2013, which claims the benefit of Russian Application No. RU 2012143980, filed Oct. 16, 2012, the contents of which are herein incorporated by reference in their entireties.
The utility model belongs to tilt rotors nonexpendable aircrafts.
Basically, the convertiplane constitutes an aircraft (AC) with tilt rotors which work as lift engines during takeoff and landing and as tractor/pusher engines during level flight (at the same time the lift is provided by a fixed wing). The design of such AC is essentially very similar to vertical-takeoff-and-landing aircraft (VTOL), but usually they are referred to rotary-wing aircrafts due to rotors design features and their large diameter comparable with a wing span (see e.g. ru.wikipedia.org). In the chain of construction arrangements of convertiplanes apart from widely known (see e.g. http://ru.wikipedia.org/wiki/V-22_Osprey) a convertiplane according to the RF patent No. 2446078 for an invention can be distinguished. It consists of two fuselages, front cross-fuselage horizontal tail, cross-fuselage tailplane and cross-fuselage center wing section. Central sections of symmetrically oriented fuselages together with front cross-fuselage horizontal plane and cross-fuselage tailplane form rigid force loop, which also includes vertical stabilizers situated at rear fuselages. The wing consists of console sections rigidly fixed to fuselages. Outboard wing panels can be also designed as a closed wing system. In different versions the convertiplane may have one, two or more center wing planes. The center wing planes are connected with fuselages through pivot blocks with the possibility of pivoting them with incidence angle of more than 90°. Engine-propeller combinations with coaxial rotors turning in opposite directions are mounted in the central section of center wings. The rotors have a possibility to rotate about center wing axis. Rotors center of thrust while engine-propeller combinations axes being in vertical position is positioned above the convertiplane design mass center. The described design allows increasing flight stability and as a consequence increasing the flight safety.
At the same time, the following shall be referred to the disadvantages of existing designs of convertiplanes:
The problem solved by creation of intended group of utility models consists in creation of fundamentally new convertiplane structure with principles of pushover and flight control different to the existing ones. At the same time a technical result which may be obtained during the solving of set problem consists in simplification and weight reduction of AC structure, increasing of its maneuvering ability at every flight stage, improvement of its aerodynamic quality such as stability and aerodynamic efficiency.
To achieve a designated result it is proposed in the first of the claimed variants of convertiplane having a fuselage, a wing and engine groups to design each engine group in the form of at least one engine positioned with the possibility to turn, at the same time the engines in groups are designed in view of the condition of thrust change relative to each other and/or groups and engine groups are positioned at the tip of corresponding wing at front fuselage and tail fuselage.
Preferable but not obligatory examples of implementation of such version intend mounting of each engine on rotational uniaxial joint with the possibility of fixation of position; moreover each engine group may have two or more engines mounted on common axis, provided that the axis is designed with the possibility to turn and engines on this axis are positioned symmetrically relative to each other.
To achieve a designated result it is proposed in the second of the claimed variants of convertiplane having a fuselage, a wing and four engine groups to design a combined wing in the form of forward-swept wing and aft-swept wing, each engine group is designed in the form of at least one engine positioned with the possibility to turn, provided that the engines in groups are designed in view of the condition of thrust change relative to each other and/or groups and groups are positioned at the tip of corresponding wing.
Preferable but not obligatory examples of implementation of second version intend design of wings with inclination in horizontal plane—canard wing inclined downwards and aft wing inclined upwards correspondingly; canard wing span may be less than the aft wing span; the roots of canard and aft wings may be in different horizontal planes or in the same horizontal plane; each engine may be mounted on rotational uniaxial joint with the possibility of fixation of position; or each engine group has two or more engines mounted on common axis, provided that the axis is designed with the possibility to turn and engines on this axis are positioned symmetrically relative to each other; moreover each engine group may be designed in the form of at least one propeller engine in view of the condition that during takeoff/landing the rotors of engines on the canard wing are positioned higher than the wing and on aft wings rotors are positioned lower than the wing and during level flight the engines on the canard wing are tractor engines and engines on aft wings are pusher engines.
The utility model is illustrated by images of skeleton diagrams of claimed structure design according to the first (
In general, the claimed structures are characterized by the absence of vertical stabilizers and fins and wings high lift devices. The possibility to achieve the designated result in the claimed variants is defined in particular by the fact that the possibility of coordinated modulation of thrust in engines and/or engine groups for example by creating the different thrust at the left and the right side about the axis of flight and from above and below of it allows to control the direction of flight including during pushover. Thus, during takeoff/landing stage the engines are in general, in the same plane which provides stability near the surface and in the level flight mode they are on different levels in vertical elevation which allows changing the direction of flight by controlling the thrust of engines.
Additionally, the result is achieved due to engines tilt during transition under the influence of angular momentum created by the engines. Possible design alternates may intend the presence of rotating aileron at each engine positioned at the engine aft (i.e. at the nozzle exit in case of jet engine or behind the propeller engine airflow); it is the rotation of abovementioned ailerons which creates the torsional moment about the engine mounting axis, see
Stability during the flight is provided by positioning the engines in a wide plane of vertical elevation and by application of four-wing (for the second claimed variant) design.
Let's consider the flight control principles in the flight mode.
Longitudinal axis control (
Directional axis control. Is performed using rear engines thrust difference.
Roll axis control (
Number | Date | Country | Kind |
---|---|---|---|
2012143980 | Oct 2012 | RU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2013/000914 | 10/16/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/062097 | 4/24/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2944395 | Doak | Jul 1960 | A |
3231221 | Platt | Jan 1966 | A |
3284027 | Mesniere | Nov 1966 | A |
3797783 | Kisovec | Mar 1974 | A |
5046684 | Wolkovitch | Sep 1991 | A |
5419514 | Ducan | May 1995 | A |
8128033 | Raposo | Mar 2012 | B2 |
8936212 | Fu | Jan 2015 | B1 |
20050230519 | Hurley | Oct 2005 | A1 |
20110001001 | Bryant | Jan 2011 | A1 |
20110001020 | Forgac | Jan 2011 | A1 |
20110168835 | Oliver | Jul 2011 | A1 |
20110315809 | Oliver | Dec 2011 | A1 |
20120261523 | Shaw | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150314867 A1 | Nov 2015 | US |