The present disclosure relates generally to image deblocking for decoded images, and more particularly to formulating deblocking of an image in terms of convex optimization that can be readily solved by way of numerical methods.
Block-based transforms followed by scalar quantization is the most popular scheme for image compression. While significantly reducing the number of bits for content representation, this scheme can introduce serious blocking artifacts into the decoded image and degrade the visual quality. It is therefore highly desirable to develop post-processing techniques to mitigate these blocking artifacts in the decoded image.
Conventionally, many different methods have been developed and proposed for image deblocking. Among these known methods, one popular class of post-processing algorithms is based on the notion of projections onto convex sets (POCS). According to these POCS methods, a number of convex constraint sets (described by the corresponding convex functions) have been defined to describe the blocking-free image, while the original image is assumed to be in the intersection of these sets. Thus, in order to achieve deblocking, the decoded image is treated as an initial guess of the original image and is then iteratively projected onto every set. It is expected that the image will converge to one that is free of blocking artifacts with all the constraints satisfied.
While exhibiting varying degrees of deblocking capability, POCS-based approaches have two primary limitations. First, there is no optimization criterion in the deblocking. Rather, the projection iterations will terminate when all the constraints are satisfied, and thus POCS-based approach only solves a feasibility problem. Second, the users have to define the projection operation for every constraint set. However, for some sets, the corresponding projection operations may not be easy to recognize. With improper projection operations, the iteration process may diverge and give an even worse image than before deblocking processes have been initiated.
The following presents a simplified summary of the claimed subject matter in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented later.
The subject matter disclosed and claimed herein, in one or more aspects thereof, comprises an architecture that can provide an optimal solution to an objective function in order to facilitate image deblocking for a decoded image. In accordance therewith and to other related ends, the architecture can receive an image and select a particular section of the image for processing. Based upon examination of the selected image section or the entire image, a set of convex constraint functions can be generated. The set can include one or more convex quantization constraint function as well as one or more convex boundary constraint function.
In more detail, the architecture can examine the image in order to identify or infer/estimate a type of encoding employed. By determining the type of encoding used, one or more convex quantization constraint functions can be constructed. In addition, also based upon image analysis, a level of complexity (e.g., smooth versus textured) for the selected section can be determined. Based upon the level of complexity for the section, one or more convex boundary constraint functions can be derived. For example, low complexity or smooth sections will typically produce boundary constraints that are tighter than higher complexity or textured sections.
Furthermore, the architecture can create a convex objective function. Generally, the objective function will be based upon a quantization noise model and will include both a logarithm-likelihood portion and a summation portion that sums horizontal and vertical gradients over the section. Numerical methods can be employed to optimize the objective function for each pixel included in the selected section while simultaneously satisfying each convex constraint function included in the set. Optimized solutions can then be utilized to provide for image deblocking with respect to the selected section.
The following description and the annexed drawings set forth in detail certain illustrative aspects of the claimed subject matter. These aspects are indicative, however, of but a few of the various ways in which the principles of the claimed subject matter may be employed and the claimed subject matter is intended to include all such aspects and their equivalents. Other advantages and distinguishing features of the claimed subject matter will become apparent from the following detailed description of the claimed subject matter when considered in conjunction with the drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the claimed subject matter.
As used in this application, the terms “component,” “module,” “system,” or the like can, but need not, refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component might be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
Furthermore, the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g. card, stick, key drive . . . ). Additionally it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Moreover, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” Therefore, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
As used herein, the terms “infer” or “inference” generally refer to the process of reasoning about or inferring states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic—that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
As used herein, the term “deblocking” generally refers to suppressing, mitigating, and/or removing blocking artifacts found in a decoded image. Deblocking can further refer to the above process while maintaining true object edges (e.g., those edges in the original and/or non-encoded image) and substantially avoiding blurring of the image.
Referring now to the drawings, with reference initially to
System 100 can also include analysis component 108 that can receive image section 106 (and/or image 104) and can perform various examination procedures on the received data in order to facilitate or aid in construction of certain mechanisms that can be employed to facilitate deblocking. In particular, analysis component 108 can generate set 110 of constraint functions and objective function 112, potentially based upon the examination of image section 106. It should be appreciated that all constraint functions included in set 110 as well as objective function 112 can be convex functions in order to facilitate a convex optimization approach to deblocking. Further detail in connection with analysis component 108 can be found with reference to
Still further yet, system 100 can include deblocking component 114 that can receive set 110 of convex constraint functions and convex objective function 112, e.g., from analysis component 108. Deblocking component 114 can determine optimal solution 116 to objective function 112 for image section 106, wherein the optimal solution 116 satisfies each constraint function from set 110. In other words, deblocking component 114 can solve objective function 112 with respect to image section 106. Hence, optimal solution 116 can be consistent with all convex constraints included in set 110 and can be utilized for deblocking image section 106 of image 104. Additional features with respect to deblocking component can be found with reference to
System 100 can also include data store 118, which is intended to be a repository of all or portions of data, data sets, or information described herein or otherwise suitable for use with the claimed subject matter. Data store 118 can be centralized, either remotely or locally cached, or distributed, potentially across multiple devices and/or schemas. Furthermore, data store 118 can be embodied as substantially any type of memory, including but not limited to volatile or non-volatile, sequential access, structured access, or random access and so on. It should be understood that all or portions of data store 118 can be included in system 100, or can reside in part or entirely remotely from system 100.
In accordance with the foregoing, it is readily apparent that the subject matter claimed and described herein can facilitate image deblocking by, e.g. formulating the result in terms of convex optimization. It should be appreciated that a convex optimization problem generally includes optimization variables, an objective function to be minimized, and a number of constraint functions. Thus, the formalization described herein can utilize image section 106 (e.g., pixels included in image section 106) as the optimization variables, or the area or region of image 104 that is to be optimized. Naturally, the objective function can be objective function 112, while the constraint functions can be represented by set 110 of constraint functions. All constraint functions from set 110 as well as objective function 112 can be convex functions. Furthermore, in some cases, one or more functions can be further restricted to be linear. The optimization process can be directed to finding the optimal values of optimization variables (e.g. image section 106) such that objective function 112 can be minimized while all the constraints are satisfied.
In particular, based on analysis of certain features associated with an input image (e.g., image 104) such as, e.g., a type of compression employed as well as a complexity of the region being processed (e.g., smooth versus textured), a set of convex constraint functions (e.g., set 110) for a deblocked image can be constructed. Furthermore, an objective function potentially based on maximum-likelihood estimation (e.g., objective function 112) can also be constructed with respect to the region being processed (e.g., image section 106). Given the described constraint functions and objective function, image deblocking can be formulated as a convex optimization problem, which can be readily solved using numerical methods, and the final output image or section can be guaranteed to be the optimal one for the given objective function while satisfying all the constraints. Thus, the claimed subject matter can mitigate blocking artifacts, yet can substantially preserve image edges. Moreover, while the subject matter described herein can be applied in a very general manner, more sophisticated convex constraints, potentially including constraints already known in the art can be utilized in connection with the claimed subject matter.
Turning now to
With reference now to
To provide additional context, the image coding process is briefly reviewed. Let XO be the input optimization variable (e.g., image section 106). First, DCT transform can be applied to XO, giving rise to DCT block YO,
YO=HTXOH, (1)
where H and HT are the DCT transform matrix and its transpose, respectively.
Subsequently, the DCT matrix YO is quantized. The quantization process typically is not part of the coding standard, and thus can be user-defined. Accordingly, in order to provide a concrete illustration, a widely-used quantization process is assumed. However, it should be appreciated that the claimed subject matter can be useful for other quantization processes or standards. Let YO(i,j) be the (i,j)-th coefficient of YO. The quantization process of YO(i,j) can be described using the following equation:
where Yq(i,j) is the quantized value of YO(i,j), α is the quantization parameter (qp), Q(i,j) is the (i,j)-th coefficient of quantization factor matrix Q, notation └·┘ denotes the maximum integer less than or equal to the argument, and sign(y) is the sign function equal to 1 when y>0; 0 when y=0; and −1 when y<0.
At the decoder side, Yq(i,j), α, and Q(i,j) can be obtained from the bitstream, e.g., in case 1 for convex quantization constraint function 302a. For situations in which the decoding process is not accessible, the convex quantization constraint function 302b (e.g., case 2) can be estimated from the decoded image based upon well-known compression history estimation techniques. Given Yq(i, j), α, and Q(i,j), the maximum and minimum possible values of YO(i,j) can be determined. In accordance therewith, matrices U (e.g. upper) and L (e.g., lower), whose elements U(i,j) and L(i,j) can be the maximum and minimum possible values of YO(i,j), respectively. The expressions of U(i,j) and L(i,j) can be as follows:
U(i,j)=α·Q(i,j)·(Yq(i,j)+0.5); (3)
L(i,j)=α·Q(i,j)·(Yq(i,j)−0.5). (4)
According to the described deblocking approaches, it can be desirable to restore the original blocking-free image XO. For image sections 106 whose DCT coefficients lie outside the range [L, U], it is highly probable those image sections 106 are quite different from the original block XO. As a result, the following quantization constraint is defined for the optimization variable XO (e.g. the current image section 106 being processed):
LHTXHU, (5)
where denotes element-wise inequality. It is therefore readily apparent that constraint function HTXH is linear and thus convex.
Referring now to
Thus, with reference to image section 10611, that particular portion of image 104 can be seen to be rather smooth. In contrast, image section 10612 appears to be highly textured. Accordingly, analysis component 108 can generate a tight convex boundary constraint function 402a for image section 10611, yet generate a loose convex boundary constraint function 402b for image section 10612.
Initially, the horizontal gradient and vertical gradient of X can be defined. Let Xr and Xb be the right and the bottom blocks of X. For X(i,j), the horizontal gradient, Gh(i,j), and vertical gradient, Gv(i,j), can be calculated as follows:
Appreciably, both i and j operate from 0 to 7 given image section 108 was defined to be an 8×8 block of pixels. Other values for i and j could understandably be employed for differently sized image sections 106. It should also be appreciated that natural images (e.g., normal input image 104) tend to be substantially smooth. However, for sections of the image that include blocking artifacts, there typically are numerous “false edges” at the section boundaries, and thus the gradients of pixels included in image section 106 located at section boundaries can be very large. Accordingly, constraints on the gradients of boundary pixels can be established in order to ensure the smoothness across the various sections.
According to an aspect, the proposed approach can process the image sections 10611-106MN in a left-to-right and top-to-bottom order. Hence, when the current section is to be processed, the upper and left neighboring sections generally have already been processed. Accordingly, it can be assumed that blocking artifacts at the left and upper boundaries have been previously handled or suppressed. Therefore, essentially only the gradients at the right and bottom boundaries need be constrained.
The following constraints to the cross-boundary differences can be applied.
G
h(7,j)≦ζh, j=0, . . . , 7; (8)
G
v(i,7)≦ζv, i=0, . . . , 7; (9)
where ζh and ζv are, respectively, horizontal and vertical thresholds explained in greater detail infra. For equations denoted (8) and (9), Gh(j) and Gv(i) are norm functions, and are thus convex.
The boundary constraints can be utilized in order to suppress extant blocking artifacts by forcing the cross-boundary difference below the given thresholds, ζh and ζv. Moreover, generally, for different parts of the image, the spatial complexity is different and the visibility of the blocking artifact is different as well. Specifically, the blocking artifacts are often more visible in smooth regions such as image section 10611, and less perceptible in textured regions such as image section 10612. So, while the constraints for the smooth regions (e.g., low complexity) will usually be constructed to be very tight, the constraint can be loosened in the textured regions (e.g., high complexity) so that more freedom can be given to the optimization without noticeably affecting visual quality. Thus, the values of ζh and ζv can be adaptive to the spatial complexity of the current image section 106.
If the original section is not available, the spatial complexity can be estimated using the decoded blocking section Xq. The smooth regions should have relatively small gradient while textured regions should have relatively large gradient. Thus, the gradient information of Xq can be used to measure the spatial complexity. The horizontal gradient and vertical gradient of the blocking section Xq can thus be calculated. To overcome the effects of a false edge at boundaries, the horizontal gradients of the pixels at the right boundary, and the vertical gradients of the pixels at the bottom boundary, need not be considered. Let τh and τv be the maximum horizontal and vertical gradient in Xq, the thresholds ζh and ζv can be calculated as follows,
ζh=τh+ch; (10)
ζv=τv+cv, (11)
where ch and cv are horizontal and vertical offsets, respectively, that can be predetermined, intelligently determined, determined ad hoc, or defined by a user.
Turning now to
In an aspect of the claimed subject matter, objective function 112 can be a likelihood function of X. More particular, objective function 112 can include a logarithm-likelihood portion and a summation portion that sums horizontal and vertical gradients over image section 106. In order to derive the likelihood function of X, a quantization noise model for image section 106 can be constructed. In accordance therewith, system 500 can further include modeling component 502 that can construct quantization noise model 504, which can be provided to analysis component 108. In an aspect of the claimed subject matter, analysis component 108 can derive objective function 112 based upon an examination of quantization error variance included in quantization noise model 504, an example of such is provided infra.
To begin, one can define quantization error block, E, whose (i,j)-th element, E(i,j), is the quantization error in Xq(i,j),
E(i,j)=XO(i,j)−Xq(i,j). (12)
Although not strictly necessary, assumptions can be adopted that quantization errors E(i,j) follow Gaussian distribution and are mutually independent. Hence,
where σE2(i,j) is the variance of quantization error.
It should be appreciated that while previous works associated with image deblocking made the assumptions that quantization errors follow Gaussian distribution and are mutually independent, such works also assumed that the quantization error at different locations within the image portion being process have the same variance. However, simulation results suggest otherwise. For example, quantization error variance approximated using mean squared pixel error for a typical image section 106 indicates that quantization error variance is relatively small for central pixels, and relatively large for pixels along edges of image section 106. In other words, given an 8×8 image section 106, a central block of pixels X(i,j), where both i and j range from 1 to 6, the central block yields very small error variance. However, around the edges (e.g., i or j=0 or 7), the error variance increases, often quite dramatically so.
Thus, construction of objective function 112 in accordance with an aspect of the claimed subject matter can be based upon quite unexpected results. Namely, an understanding that is quite contrary to conventional thought that error variance is largely the same across the entire region or image section being processed. In deference to this new insight, the following function can be utilized to approximate the shape of σE2(i,j):
σE2(i,j)=a·((i−3.5)2+(j−3.5)2+d), (14)
where a is a factor increasing with α and d is a constant.
As the final X should be as similar to Xo as possible, the likelihood of X given Xq is assumed to be as the same as that of Xo,
The likelihood functions of X(i,j) can be assumed to be independent, and the following log-likelihood function for optimization variable X can be derived as:
It is also desirable that X be smooth and thus gradient Gh(i,j) and Gv(i,j) can also be included in objective function 112 for minimization. Objective function 112 can be a combination of the log-likelihood function and the gradients,
where λ can be a user-defined weight factor. From equations (16) and (17), it is readily apparent that objective function 112 is a linear combination of convex functions and therefore is also convex.
Based upon the foregoing, the convex optimization problem for image blocking can be formulated as:
The convex optimization problem can be easily solved, for example by employing well-known and readily available scientific software named. It is possible that in some cases, the convex optimization problem is infeasible, meaning that no X can simultaneously satisfy quantization constraints and boundary constraints. Typically such a situation will arise when there is a “true edge” at the boundary of the current block. In such case, it should be appreciated that the deblocking processes described herein need not be performed. Thus, a true edge, we will not be blurred in any way.
In accordance with the foregoing, analysis component 108 can thus supply one or more convex quantization constraint function 302, one or more convex boundary constraint function 402, and objective function 112 to deblocking component 114. As detailed supra, deblocking component 114 can determine optimal solution 116 to objective function 112 for image section 106, wherein optimal solution 116 can satisfy each constraint function 302, 402 from set 110 of convex constraint functions. Based upon optimal solution 116 for image section 106, deblocking component 114 can produce deblocked section 508 for image section 106, where deblocked section 508 is substantially free of blocking artifacts, yet retains edges.
It was further noted above that image 104 (and therefore image section 106) can be an encoded bitstream/bytestream or exist as a decoded image in the associated encoding file format. It should therefore be understood that in the cases where image 104 is encoded, deblocking component 114 can include or be operatively coupled to decoding component 506 that can decode and/or decompress the encoded bitstream into the associated file format. Although not expressly depicted, in some implementations, decoding component 506 can be included in or operatively coupled to acquisition component 102. In the latter situation, acquisition component 106 can facilitate decoding of an encoded bitstream prior to selection of image section 106.
In addition, system 500 can further include intelligence component 510 that can provide for or aid in various inferences or determinations. It is to be appreciated that intelligence component 510 can be operatively coupled to all or some of the aforementioned components. Additionally or alternatively, all or portions of intelligence component 510 can be included in one or more of the components described herein. Moreover, intelligence component 510 will typically have access to all or portions of data sets described herein, such as data store 118, and can furthermore utilize previously determined or inferred data.
Accordingly, in order to provide for or aid in the numerous inferences described herein, intelligence component 510 can examine the entirety or a subset of the data available and can provide for reasoning about or infer states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic—that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data.
Such inference can result in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources. Various classification (explicitly and/or implicitly trained) schemes and/or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, data fusion engines . . . ) can be employed in connection with performing automatic and/or inferred action in connection with the claimed subject matter.
A classifier can be a function that maps an input attribute vector, x=(x1, x2, x3, x4, xn), to a confidence that the input belongs to a class, that is, f(x)=confidence(class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hyper-surface in the space of possible inputs, where the hyper-surface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches include, e.g. naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.
More particularly, intelligence component 510 can be employed or accessed by analysis component 108 in order to intelligently estimate parameters for quantization constraint function 302 in cases where the decoding process is not available. As another example, intelligence component 510 can provide machine learning techniques to aid or enhance generation of boundary constraint functions 402 based upon complexity analysis. In other situations, intelligence component 510 can be utilized by deblocking component 114 in order to construct optimized solution 116, again potentially based upon machine learning techniques.
With reference now to
At reference numeral 604, a set of convex constraint functions can be constructed based upon an analysis of the selected section, for which addition details or features are described in connection with
At reference numeral 608, the convex objective function can be optimized. Typically, the optimization can be carried out based upon numerical methods that are readily accessible. In addition, the optimization of the convex objective function can require that each and every convex constraint function composing the set of convex constraint functions be satisfied.
Referring to
At reference numeral 706, the selected section can be analyzed for determining an amount of texture in the selected section. Based upon the amount of texture (e.g., very smooth to highly textured) identified in the selected section, at reference numeral 708, a convex boundary constraint function can be constructed. In more detail, a narrow boundary for the convex boundary constraint function can be utilized when the selected section is substantially textured as indicated at reference numeral 710. In contrast, when the selected section is substantially smooth, a wide boundary for the convex boundary constraint function can be utilized as denoted at reference numeral 712. Again, it is to be understood that the convex boundary constraint functions can be included in the set of convex constraint functions described in connection with act 604
With reference now to
At reference numeral 806, a quantization noise model can be generated for the selected section. The quantization noise model can depict or define quantization error variance for pixels included in the selected sections. The quantization error variance can be defined as mean squared pixel error variance. At reference numeral 808, the convex objective function can be constructed further based upon the quantization noise model generated at act 806.
Referring now to
Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
The illustrated aspects of the claimed subject matter may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
A computer typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media can comprise computer storage media and communication media. Computer storage media can include both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
With reference again to
The system bus 908 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 906 includes read-only memory (ROM) 910 and random access memory (RAM) 912. A basic input/output system (BIOS) is stored in a non-volatile memory 910 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 902, such as during start-up. The RAM 912 can also include a high-speed RAM such as static RAM for caching data.
The computer 902 further includes an internal hard disk drive (HDD) 914 (e.g., EIDE, SATA), which internal hard disk drive 914 may also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 916, (e.g., to read from or write to a removable diskette 918) and an optical disk drive 920, (e.g. reading a CD-ROM disk 922 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 914, magnetic disk drive 916 and optical disk drive 920 can be connected to the system bus 908 by a hard disk drive interface 924, a magnetic disk drive interface 926 and an optical drive interface 928, respectively. The interface 924 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE1394 interface technologies. Other external drive connection technologies are within contemplation of the subject matter claimed herein.
The drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 902, the drives and media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may also be used in the exemplary operating environment, and further, that any such media may contain computer-executable instructions for performing the methods of the claimed subject matter.
A number of program modules can be stored in the drives and RAM 912, including an operating system 930, one or more application programs 932, other program modules 934 and program data 936. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 912. It is appreciated that the claimed subject matter can be implemented with various commercially available operating systems or combinations of operating systems.
A user can enter commands and information into the computer 902 through one or more wired/wireless input devices, e.g. a keyboard 938 and a pointing device, such as a mouse 940. Other input devices (not shown) may include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other input devices are often connected to the processing unit 904 through an input device interface 942 that is coupled to the system bus 908, but can be connected by other interfaces, such as a parallel port, an IEEE1394 serial port, a game port, a USB port, an IR interface, etc.
A monitor 944 or other type of display device is also connected to the system bus 908 via an interface, such as a video adapter 946. In addition to the monitor 944, a computer typically includes other peripheral output devices (not shown), such as speakers, printers, etc.
The computer 902 may operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 948. The remote computer(s) 948 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 902, although, for purposes of brevity, only a memory/storage device 950 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 952 and/or larger networks, e.g., a wide area network (WAN) 954. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, e.g. the Internet.
When used in a LAN networking environment, the computer 902 is connected to the local network 952 through a wired and/or wireless communication network interface or adapter 956. The adapter 956 may facilitate wired or wireless communication to the LAN 952, which may also include a wireless access point disposed thereon for communicating with the wireless adapter 956.
When used in a WAN networking environment, the computer 902 can include a modem 958, or is connected to a communications server on the WAN 954, or has other means for establishing communications over the WAN 954, such as by way of the Internet. The modem 958, which can be internal or external and a wired or wireless device, is connected to the system bus 908 via the serial port interface 942. In a networked environment, program modules depicted relative to the computer 902, or portions thereof, can be stored in the remote memory/storage device 950. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
The computer 902 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a bed in a hotel room, or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 9 Mbps (802.11b) or 54 Mbps (802.11a) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic “10BaseT” wired Ethernet networks used in many offices.
Referring now to
The system 1000 also includes one or more server(s) 1004. The server(s) 1004 can also be hardware and/or software (e.g. threads, processes, computing devices). The servers 1004 can house threads to perform transformations by employing the claimed subject matter, for example. One possible communication between a client 1002 and a server 1004 can be in the form of a data packet adapted to be transmitted between two or more computer processes. The data packet may include a cookie and/or associated contextual information, for example. The system 1000 includes a communication framework 1006 (e.g., a global communication network such as the Internet) that can be employed to facilitate communications between the client(s) 1002 and the server(s) 1004.
Communications can be facilitated via a wired (including optical fiber) and/or wireless technology. The client(s) 1002 are operatively connected to one or more client data store(s) 1008 that can be employed to store information local to the client(s) 1002 (e.g., cookie(s) and/or associated contextual information). Similarly, the server(s) 1004 are operatively connected to one or more server data store(s) 1010 that can be employed to store information local to the servers 1004.
What has been described above includes examples of the various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the embodiments, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. Accordingly, the detailed description is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.
In particular and in regard to the various functions performed by the above described components, devices, circuits, systems and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g. a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the embodiments. In this regard, it will also be recognized that the embodiments includes a system as well as a computer-readable medium having computer-executable instructions for performing the acts and/or events of the various methods.
In addition, while a particular feature may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” and “including” and variants thereof are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising.”