Exemplary embodiments according to the present invention will be described in detail below with reference to the accompanying drawings.
In this specification, the terms “print” and “printing” not only include the formation of significant information such as characters and graphics, but also broadly includes the formation of images, figures, patterns, and the like on a print medium, or the processing of the medium, regardless of whether they are significant or insignificant and whether they are so visualized as to be visually perceivable by humans.
Also, the term “print medium” not only includes a paper sheet used in common printing apparatuses, but also broadly includes materials, such as cloth, a plastic film, a metal plate, glass, ceramics, wood, and leather, capable of accepting ink.
In
Reference numeral 20 denotes an LF roller (conveyance roller); 21, an LF gear; 22, the LF code wheel; and 23, a pinch roller. Reference numeral 25 denotes a discharge roller; 26, a discharge gear; 27, the discharge code wheel; 28, a spur; and 29, a print paper. Reference numeral 24 denotes a driving transfer gear which transfers the driving forces of the LF gear 21 and discharge gear 26. It should be noted that the feed roller conveys a print medium on the stacking unit (tray) up to the LF roller.
In
The LF gear 21 rotates to rotate the LF roller 20 and the LF code wheel 22 attached to the LF roller 20.
The discharge gear 26 also rotates via the driving transfer gear 24 meshed with the LF gear 21. In this structure, the discharge roller 25 also rotates, and as a result the discharge code wheel 27 also rotates.
During conveyance, the print paper 29 is supported at two points: a point between the LF roller 20 and the pinch roller 23, and a point between the discharge roller 25 and the spur 28. When printing at the trailing end of the print paper 29, the print paper 29 is conveyed only by the discharge roller 25 and spur 28 because it has passed through the support by the LF roller 20 and pinch roller 23.
In
Reference numeral 4 denotes a position counter (EJ position counter) for a discharge encoder. The EJ position counter 4 counts position information of the discharge encoder upon receiving a discharge encoder signal 10 output from a discharge encoder 2.
When an LF trigger 46 is input to a rewrite register 47, a value held by the rewrite register 47 can be written in the EJ position counter 4. A CPU 6 sets LF sync position information 14 which is a value held by the rewrite register 47.
Reference numeral 44 denotes a mask circuit which masks the LF trigger. By enabling the mask circuit 44, neither the LF trigger 46 is output, nor is the value of the EJ position counter 4 rewritten. To the contrary, by disabling the mask circuit 44, the value of the EJ position counter 4 becomes rewritable. A signal 45 output from the CPU 6 enables or disables the mask circuit 44.
Reference numeral 40 denotes an LF trigger generation block (LF position trigger generation block). The LF trigger generation block 40 compares the value of trigger output setting information 41 set by the CPU 6 with the value of LF encoder position information (LF position information) 11. If these values coincide with each other, the LF trigger generation block 40 outputs an LF trigger signal 17.
Reference numeral 5 denotes a first phase difference counter. Upon receiving the LF trigger signal 17, the first phase difference counter 5 refers to the LF encoder signal 9 and discharge encoder signal 10, and counts their phase difference. At this time, the first phase difference counter 5 counts the phase difference using a clock signal 43 output from a count clock generation unit (clock generation unit) 42.
Note that the LF trigger signal 17 is used to count the phase difference between the encoder signals 9 and 10, and to rewrite EJ position information (to be described later). The control blocks shown in
Similarly, reference numeral 18 denotes a second phase difference counter. Upon receiving the LF trigger signal 17, the second phase difference counter 18 refers to the LF encoder signal 9 and discharge encoder signal 10, and counts their phase difference.
The CPU 6 independently reads out LF position information 11 from the LF position counter 3, and discharge position information (EJ position information) 13 from the EJ position counter 4. The CPU 6 servo-controls a feed motor 8A by outputting to a motor controller 7A a control signal 15A for controlling the feed motor 8A. Reference numeral 16A denotes a signal output from the motor controller 7A to the feed motor 8A in servo control.
The CPU 6 servo-controls an LF motor 8B by outputting to a motor controller 7B a control signal 15B for controlling the LF motor 8B. Reference numeral 16B denotes a signal output from the motor controller 7B to the LF motor 8B in servo control.
The servo control includes position servo control to perform control based on position information, and velocity servo control to perform control based on velocity information. The DC motor is controlled by a combination of position servo control and velocity servo control. For descriptive convenience, the first embodiment considers only position servo control.
Reference numeral 51 denotes a printhead which is mounted on a carriage 50. A carriage motor 52 drives the carriage 50 under the control of a carriage motor controller 53.
Reference numeral 54 denotes an interface connected to an external host apparatus.
As an example of mounting the control blocks shown in
In
As represented by the first phase difference information 12, the first phase difference counter 5 counts the time between an LF encoder pulse and a preceding discharge encoder pulse. As represented by the second phase difference information 19, the second phase difference counter 18 counts the time between an LF encoder pulse and a succeeding discharge encoder pulse.
Counting is done based on the clock signal 43, and for example the counter value is counted up every leading edge.
Every time the pulse of the discharge encoder signal 10 is input, the values of the two counters are cleared to 0. The first phase difference information 12 is held based on input of the LF trigger signal 17.
The second phase difference counter 18 starts counting at the timing when the LF trigger signal 17 is input, and fixes the counter value at the timing when the first pulse of the discharge encoder signal 10 is input.
The rewrite register 47 holds the value “3” before the start of the conveyance operation. By using the rewrite register, a value corresponding to the amount of conveyance of a conveyance operation to be executed next can be set before executing the conveyance operation.
This process can equalize the LE position information and EJ position information even when the EJ position information is updated with a large delay, as shown in
The phase relationship (Ta>Tb or Ta<Tb) between pulses from these encoders suffices to be measured in advance in a preceding conveyance operation.
The arrangement to update EJ position information to a desired value is effective when the resolutions of the LF encoder and discharge encoder are different.
<Sequence to Measure Phase Difference and Change Position Information>
A sequence to measure the phase difference between encoder signals (pulses) and change position information will be explained. For descriptive convenience,
Note that, after the trailing end of paper passes through the LF roller (nip of the LF roller) by the conveyance operation, the discharge roller conveys the paper. That is, after the trailing end of paper passes through the LF roller (nip of the LF roller), conveyance operation control switches from servo control based on an LF encoder signal to that based on a discharge encoder signal. Control switches between the conveyance operation 82 and the conveyance operation 83.
Thus, the value of the EJ position information 13 is rewritten before executing the conveyance operation 83. For this purpose, the phase relationship between pulses from the encoders is checked in the conveyance operation 81. The check is executed at end timing M of the conveyance operation 81. The EJ position information 13 is rewritten at operation start timing S of the conveyance operation 82.
Note that rewrite of the EJ position information 13 in the conveyance operation 82 does not affect control of the conveyance operation 82 because the LF position information 11 used for the control does not change.
<Control Sequence>
A control sequence associated with the conveyance operation will be explained with reference to
This determination is based on the number of conveyance operations in a 1-page printing operation, the number of cumulative pulses in the conveyance operations in the 1-page printing operation, and the like.
In this manner, it is determined whether to execute rewrite in a conveyance operation to be executed.
If the EJ position information 13 is to be rewritten, the process advances to S3 to disable the trigger mask. If no EJ position information 13 is to be rewritten, the process advances to S2 to enable the trigger mask. If the EJ position information 13 is to be executed, a rewrite value is set in S4. In S5, the conveyance operation is performed.
The rewrite value in S4 is determined based on the phase relationship (Ta>Tb or Ta<Tb) between pulses from the encoders, as described above.
According to the above-described control sequence, when executing rewrite, the LF trigger 46 is output during the conveyance operation, as shown in
If no rewrite is to be executed, the trigger mask is enabled to neither output an LF trigger signal during the conveyance operation nor rewrite the EJ position information 13. For example, no rewrite process is done in the conveyance operations 81, 83, and 84 in
This rewrite process allows switching the conveyance operation from servo control based on an LF encoder signal to servo control based on a discharge encoder signal even if pulses from the encoders have a phase difference.
Even when a conveyance operation by the LF roller and discharge roller shifts to one by the discharge roller, the above-described control sequence can reliably achieve conveyance control and implement conveyance by a desired amount of conveyance. This control sequence can reduce conveyance pitch nonuniformity in printing.
Another sequence to measure the phase difference and change position information will be explained with reference to
For descriptive convenience, similar to
The phase relationship can be more accurately determined by checking the phase relationship between pulses from the encoders at the timing closest to the servo control period EJ count based on a discharge encoder signal.
Another embodiment using a different control sequence associated with the conveyance operation will be described with reference to
The sequence in
The EJ position information 13 is corrected when the phase relationship is Ta<Tb after performing the conveyance operation.
A rewrite value is set in S11, and the conveyance operation is done in S12. The process waits until it is determined in S13 that the conveyance operation stops. In S14, it is determined based on the phase difference whether to correct the EJ position information 13. If it is determined in S14 that the EJ position information 13 must be corrected, the EJ position information 13 is corrected in S15.
If Ta<Tb, it is determined in S14 that the EJ position information 13 must be corrected, and the process advances to S15 in order to execute correction. If Ta>Tb, it is determined in S14 that the EJ position information 13 need not be corrected, and the process ends.
The first embodiment has described the arrangement to control the conveyance mechanism with reference to
In
Reference numeral 31 denotes velocity information which is the count value of the pulse interval of a discharge encoder. Reference numeral 32 denotes a fixing block which receives the velocity information 31 and an LF trigger signal 17, and fixes the count value of the pulse interval of the discharge encoder. The fixing block 32 outputs a fixed count value 33 of the pulse interval of the discharge encoder to a CPU 6.
Referring to
The above-mentioned phase relationship (Ta<Tb or Ta>Tb) between encoder signals may be determined from these two counter values.
According to the fourth embodiment, even when it is not guaranteed that the pulse of the discharge encoder signal 10 is always generated after outputting pulse E of the LF encoder signal 9, the pulse period of the discharge encoder can be reliably measured. In this case, the fourth embodiment is premised on that the length of the pulse period of the discharge encoder does not greatly change.
The fourth embodiment may be combined with the second or third embodiment.
The conveyance apparatus has been described above, and its application is not limited to a printing apparatus. For example, the conveyance apparatus is also applicable to a scanner or the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-226700, filed Aug. 23, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-226700 | Aug 2006 | JP | national |