This application is based on and claims the benefit of priority from Japanese Patent application No. 2015-50333 filed on Mar. 13, 2015, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a conveyance unit preferably applied in a copying machine or a printer or the like and an image forming apparatus including this.
An image forming apparatus such as a copier and a printer includes a conveyance unit bringing an uppermost sheet of a stacked sheet bundle into pressure contact with a sheet feed roller to convey the sheet.
For instance, a sheet feed unit (a conveyance unit) includes a lift plate provided liftably within a sheet feed cassette, a coil spring for biasing the lift plate upward, and a hook-like eccentric cam for pressing down the lift plate by resisting against a bias force of the coil spring. The eccentric cam is fixed to a shaft and is rotationally driven in one direction. The eccentric cam controls the lift of the lift plate by coming in sliding contact with a cam follower attached to the lift plate. When no sheet is fed, the eccentric cam is located at a reference position and pushes down the lift plate to a vicinity of a lowest point.
However, the conveyance unit described causes the following trouble in attaching the sheet feed cassette. That is, when the sheet feed cassette is drawn out of the apparatus body to replenish sheets for example, the eccentric cam is disengaged from the cam follower and turns in one direction from the reference position. When the sheet feed cassette is attached in this state, the cam follower pushes out the eccentric cam in a cassette attachment direction without engaging with the eccentric cam. Therefore, the eccentric cam of the conveyance unit described above is unable to press down the lift plate. In such a case, it has been required to rotate the eccentric cam once to engage with the cam follower to press down the lift plate. That is, the conveyance unit described above has a problem that it requires to consume a wasteful time and energy of returning the eccentric cam to the reference position.
In accordance with an embodiment of the present disclosure, a conveyance unit includes a cassette and a conveyance interlocked part. The cassette removably is attached to an apparatus body. The conveyance interlocked part is provided in the apparatus body so as to be adjacent the cassette. The cassette includes a sheet storage part, a lift plate and a biasing member. The sheet storage part stores a sheet. The lift plate liftably is provided between a lowered position along a bottom plate of the sheet storage part and a raised position separated upward from the bottom plate. The biasing member biases the lift plate to the raised position so as to cause the sheet on the lift plate to contact with a pickup roller. The conveyance interlocked part includes a lever, a pressing mechanism and a support member. The lever engages with the lift plate when the cassette is attached to the apparatus body and being liftable together with the lift plate. The pressing mechanism presses the lever downward to keep the lift plate at the lowered position. The support member is provided between the apparatus body and the lever so as to suppress a drop of the lever disengaged from the lift plate when the cassette is detached from the apparatus body.
In accordance with an embodiment of the present disclosure, an image forming apparatus includes a conveyance unit delivering a sheet toward a conveyance path. The conveyance unit includes a cassette and a conveyance interlocked part. The cassette removably is attached to an apparatus body. The conveyance interlocked part is provided in the apparatus body so as to be adjacent the cassette. The cassette includes a sheet storage part, a lift plate and a biasing member. The sheet storage part stores a sheet. The lift plate liftably is provided between a lowered position along a bottom plate of the sheet storage part and a raised position separated upward from the bottom plate. The biasing member biases the lift plate to the raised position so as to cause the sheet on the lift plate to contact with a pickup roller. The conveyance interlocked part includes a lever, a pressing mechanism and a support member. The lever engages with the lift plate when the cassette is attached to the apparatus body and being liftable together with the lift plate. The pressing mechanism presses the lever downward to keep the lift plate at the lowered position. The support member is provided between the apparatus body and the lever so as to suppress a drop of the lever disengaged from the lift plate when the cassette is detached from the apparatus body.
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present disclosure is shown byway of illustrative example.
In the following, a preferable embodiment of the present disclosure will be described with reference to the appended drawings. It is noted that the following description will be made by setting a near side of each drawing as a front side and based on directions indicated in each drawing. Still further, such terms as ‘upstream’ and ‘downstream’ in the following description represent ‘upstream’, ‘downstream’ or the like in a conveying direction of a sheet S.
With reference to
The color printer 1 includes an apparatus body 2, a sheet feed cassette 3 and a sheet discharge tray 4. The apparatus body 2 is formed substantially into a shape of a box. The sheet feed cassette 3 as a cassette is provided drawably in a lower part of the apparatus body 2. The sheet discharge tray 4 is provided in a upper part of the apparatus body 2.
The color printer 1 also includes a conveyance unit 5, an image forming part 6, a fixing unit 7, and a control unit 8 within the apparatus body 2. The conveyance unit 5 is provided upstream of the sheet feed cassette 3 extended from the sheet feed cassette 3 to the sheet discharge tray 4. The image forming part 6 is provided at an intermediate part of the conveyance path 9. The fixing unit 7 is provided downstream of the conveyance path 9. The control unit 8 integrally controls the color printer 1.
As described in detail later, the conveyance unit 5 is provided to deliver a sheet S stored in the sheet feed cassette 3 described above toward the conveyance path 9.
The image forming part 6 includes four tonner containers 10, an intermediate transfer belt 11, four drum units 12 and an optical scanning device 13. The four toner containers 10 are arrayed in parallel in a left-right direction under the sheet discharge tray 4. The intermediate transfer belt 11 is disposed under the respective toner containers 10. The four drum units 12 are arrayed in parallel in the left-right direction under the intermediate transfer belt 11. The optical scanning unit 13 is disposed under the respective drum units 12.
The four tonner containers 20 house toners (developing agents) of four colors (yellow, magenta, cyan, black). It is noted that the toner may be a single-component developing agent made of a magnetic toner or may be a double-component developing agent including a toner and a carrier. The intermediate transfer belt 11 is driven so as to travel in a direction indicated by a white blanked arrow in
The four drum units 12 are provided corresponding to the toners of the respective colors. Each of the drum units 12 includes a photosensitive drum 20, a charging device 21, a development device 22, a primary transferring roller 23, a cleaning device 24 and a static eliminator 25. Each drum unit 12 primarily transfers a toner image to the intermediate transfer belt 11. Disposed on a right side of the intermediate transfer belt 11 is a secondary transfer roller 26 forming a secondary transfer nip part 26a. The full-color toner image borne on the intermediate transfer belt 11 is secondarily transferred to a sheet S passing through the secondary transfer nip part 26a. The fixing unit 7 fixes the full-color toner image on the sheet S. The sheet S which has undergone the fixing process is then discharged out to the sheet discharge tray 4.
Next, The conveyance unit 5 will be described in detail below with reference to
As shown in
The sheet feed cassette 3 is configured to be insertable into the apparatus body 2 from an opening 2a provided at a lower left surface of the apparatus body 2. The sheet feed cassette 3 is also configured to be able to be drawn out of the opening part 2a in a left direction to replenish the sheet S.
The sheet feed cassette 3 includes a sheet storage part 31 and a designed surface part 32. The sheet storage part 31 is formed approximately into a shape of a rectangular box stacking and storing the sheet S. The designed surface part 32 is provided at a left end part of the sheet storage part 31. The designed surface part 32 composes a part of an exterior surface of the apparatus body 2 in the state in which the sheet feed cassette 3 is attached to the apparatus body 2.
The sheet feed cassette 3 includes within the sheet storage part 31, a lift plate 33, a push-up spring 34, and a pair of front and rear first cursors 35 and a second cursor (not shown).
The lift plate 33 is disposed on the right side of the bottom plate 31a (bottom part) of the sheet storage part 31. A pair of front and rear plate turning shafts 33a is provided at a left end part of the lift plate 33. The pair of front and rear plate turning shafts 33a is pivotably supported by a pair of front and rear side plates 31b. The lift plate 33 is supported turnably in a vertical direction centering the respective plate turning shafts 33a. More specifically, the lift plate 33 is provided liftably between a lowered position P1 (see
As shown in
As shown in
As shown in
Next, the conveying mechanism part 30 is provided within the apparatus body 2 as shown in
As shown in
As shown in
As shown in
The holder 50 is supported swingably within the storage part 46. The holder 50 is biased upward by a coil spring 53 installed between the holder 50 and the guide part 40 (see
Still further, the retard roller 51 is in pressure contact with the sheet feed roller 42 by being biased by the coil spring 53 and composes a conveying nip N with the sheet feed roller 42 (see
As shown in
As shown in
The lever body 60 is formed approximately into a pentagonal plate in a front view. A flange part 60a extending in the front side is formed at a lower end part of the lever body 60. A lever turning shaft 62 is provided on a right end of the lever body 60. The lever turning shaft 62 is pivotally supported by a front end surface of the guide part 40. Accordingly, the lever body 60 is provided so as to operate inter-connectedly with the lift of the lift plate 33 and so as to be able to turn in the vertical direction around the lever turning shaft 62.
The lever body 60 is provided with a curved hole 63 formed so as to penetrate in the front-rear direction. The curved hole 63 extends in the vertical direction at a center part in the left-right direction of the lever body 60. The curved hole 63 is curved so as to follow a locus of the turn of the lever body 60. Provided projectively toward the front side at an edge part of a lower left side of the curved hole 63 is a columnar boss 64. The boss 64 is provided in the lever body 60 so as to be relatively slidably along cam surfaces 75 and 76 of an eccentric cam 71 described later.
The arm part 61 extends from a front end part of the lever body 60 toward the lift plate 33 side (left side). The arm part 61 is formed approximately into a quadrangular pillar having an equal width with the flange part 60a. A front end part (left end part) of the arm part 61 contacts with an upper surface of the pressure acting part 33b of the lift plate 33. The front end part of the arm part 61 is formed approximately in to a triangular column in a front view. More specifically, the arm part 61 is provided with an inclined surface 65 of down gradient from the front end side (left side) to a base end side (right side) formed at a lower side of the front end part thereof.
As shown in
It is noted that in the following description, a position of the lever 55 where the arm part 61 contacts with the lift plate 33 located at the lowered position P1 will be called as a pressing position P3 (see
As shown in
The shaft 70 is formed into a shape of a rod having approximately a shape of U in section by a metallic material such as iron. The shaft 70 penetrates through the guide part 40 in the front-rear direction and is supported rotatably by the guide part 40 (see
As shown in
As shown in
The first and second cam surfaces 75 and 76 are continuously formed on an outer circumferential surface of the eccentric cam 71. The first cam surface 75 has the eccentric radius that permits the eccentric cam 71 to come into slidable contact with the boss 64 of the lever body 60 and the lever 55 to turn upward. The second cam surface 76 has the eccentric radius that permits the eccentric cam 71 to come into slidable contact with the boss 64 of the lever body 60 and the lever 55 to turn downward by pressing the boss 64.
The first and second cam surfaces 75 and 76 are continuously formed on the side where the eccentric radius is large through a lock part 77. The lock part 77 is concaved from the first cam surface 75 toward the second cam surface 76. Still further, the first and second cam surfaces 75 and 76 are continuously formed on a side where the eccentric radius is small through a stepped part 78. The stepped part 78 is concaved from the second cam surface 76 toward the first cam surface 75. The stepped part 78 is formed such that a difference of step thereof is smaller than that of the lock part 77.
As shown in
As shown in
The input gear 83 is a so-called spur gear and is rotationally driven by the driving motor 81. The first gear 84 is a spur gear having two tooth lacking parts 84a and 84b (parts lacking tooth). The first gear 84 is fixed to the front end part of the shaft 70. The first gear 84 rotates in a body with the eccentric cam 71.
The second gear 85 is also a spur gear having two tooth lacking parts 85a and 85b as shown in
The restricting unit 82 includes a hook member 90 and a solenoid mechanism 91.
The hook member 90 is formed of a metallic plate such as iron approximately into a shape of a letter L in a front view. The hook member 90 is turnably supported by an upper part of a frame 91a of the solenoid mechanism 91. A tensile spring 92 is provided between an upper end of the hook member 90 and an upper surface of the frame 91a. The hook member 90 is pulled by the tensile spring 92 such that a lower end part thereof projects toward the second gear 85. Thereby, the lower end part of the hook member 90 engages with either one of the two receded parts 88a and 88b. It is noted that in the following description, a position where the hook member 90 engages with the recessed parts 88a and 88b will be called as an engage position P5.
The solenoid mechanism 91 is disposed on a side opposite the second gear 85 while interposing the hook member 90. By receiving power supply, the solenoid mechanism 91 attracts the hook member 90 while resisting against a bias force of the tensile spring 92. Thereby, the lower end part of the hook member 90 is detached from the recessed parts 88a and 88b. It is noted that in the following description, a position where the hook member 90 is detached from the recessed parts 88a and 88b will be called as a releasing position P6.
It is noted that the driving motor 81, the restricting unit 82, and others are connected with a power source (not shown) to receive the electric power supply. The control unit 8 controls the power source and others to control the drives of the driving motor 81, the restricting unit 82, and others.
As shown in
The support member 57 extends from a lower surface of the lever body 60 so as to bend to the lift plate 33 side (left side) and is formed approximately into a shape of letter L. More specifically, the support member 57 includes a base part 57a and an extension part 57b. The base part 57a slightly extends downward from the lower surface of the lever body 60. The extension part 57b extends in the left direction from a lower part of the base part 57a. The extension part 57b inclines toward the left side from the base part 57a side so as to be distant from the lower surface of the lever body 60. Formed at a free end (left end part) of the extension part 57b is an abutment part 57c approximately in parallel with the lower surface of the lever body 60.
The support member 57 is formed to be elastically deformable in the lift direction of the lever 55 (vertical direction). More specifically, the extension part 57b elastically deforms so as to turn in the vertical direction centering on a part connected with the base part 57a.
Next, operations of the conveyance unit 5 will be described with reference to
When no sheet S is supplied (fed), the eccentric cam 71 is located at a position where the boss 64 of the lever 55 fits into the lock part 77 (referred to as a ‘reference position’ hereinafter) and the lever 55 is kept at the pressing position P3 as shown in
In the state described above, the input gear 83 faces the tooth lacking part 85a downstream in a rotation direction of the second gear 85. The compression spring 87 is compressed between the first and second gears 84 and 85. The hook member 90 of the restricting unit 82 is moved to the engaging position P5 and is engaged with the recessed part 88a downstream in the rotation direction of the second gear 85 (see a solid line in
Next, in a case of supplying (feeding) the sheet S, the control unit 8 drives and controls the solenoid mechanism 91 of the restricting unit 82 to move the hook member 90 to the releasing position P6 (see a two-dot chain line in
In response to the advance of the rotation of the eccentric cam 71, relatively the boss 64 of the lever 55 rides over the lock part 77 and moves toward the first cam surface 75 as shown in
As described above, each support member 57 elastically deforms by causing the L-shaped free end (the support member 57) to contact with the bottom surface of the apparatus body 2. Because the free end part of each support member 57 extends to the lift plate 33 side (left side), each support member 57 can smoothly deflect while assuring an adequate displacement.
When the boss 64 is disengaged from the lock part 77 and starts to be in slidable contact with the first cam surface 75, the lever 55 turns upward by a restoration force of the support member 57 and the bias force of the push-up spring 34. It is noted that the lift plate 33 also returns to the lowered position P1 by the bias force of the push-up spring 34.
As described above, the first cam surface 75 has the eccentric radius that permits the lever 55 to rise. Therefore, in response to the further advance of the rotation of the eccentric cam 71, the lift plate 33 rises from the lowered position P1 toward the raised position P2 by being biased by the push-up spring 34. The lever 55 rises from the pressing position P3 toward the non-pressing position P4 in linkage with the rise of the lift plate 33. Still further, the boss 64 of the lever 55 relatively moves to a position just before the stepped part 78 along the first cam surface 75.
When the boss 64 moves to the position just before the stepped part 78, the control unit 8 controls the solenoid mechanism 91 of the restricting unit 82 to move the hook member 90 to the engaging position P5. Thereby, the hook member 90 engages with the recessed part 88b upstream in the rotation direction of the second gear 85 (not shown). In this state, the second gear 85 rotates to the position where the tooth lacking part 85b upstream in the rotation direction faces the input gear 83. Accordingly, the driving force to be inputted from the input gear 83 to the second gear 85 is interrupted. It is noted that at this time, the control unit 8 may control the driving motor 81 to stop driving.
It is noted that during the process in which the lever 55 turns from the pressing position P3 to the non-pressing position P4, a rotation of the shaft 70 is transmitted to the nip releasing mechanism 73 (see
By being pushed up to the raised position P2, the lift plate 33 presses the sheet S (of a bundle) stacked thereon against the pickup roller 41 (see
Here, in a case when one sheet S is sent to the conveying nip N, the retard roller 51 receives a large torque (a torque exceeding a restrictable range of the torque limiter 52) from the sheet feed roller 42 while interposing the sheet S and is driven. Thereby, the sheet S is conveyed along the guide surface 45 and is sent to the conveying path 9. Meanwhile, in a case when two sheets S are sent to the conveying nip N, the torque transmitted from the sheet feed roller 42 to the retard roller 51 is weakened. Due to that, the torque limiter 52 becomes operative, and the retard roller 51 does not rotate. As a result, the retard roller 51 gives a frictional force to a sheet S other than the sheet Sin direct contact with the sheet feed roller 42. Thereby, the sheet feed roller 42 sends only the sheet S in direction contact with the sheet feed roller 42 to the conveying path 9.
After finishing supplying the sheet S, the control unit 8 makes a control of returning the eccentric cam 71 to the reference position. At first, the control unit 8 drives and controls the solenoid mechanism 91 to move the hook member 90 to the releasing position P6 and drives and controls the driving motor 81 to rotate the input gear 83. In response to the move of the hook member 90 to the releasing position P6, only the second gear 85 rotates counterclockwise and engages with the input gear 83 as shown in
The rotation of the shaft 70 is transmitted to the nip releasing mechanism 73 (see
In response to the advance of the rotation of the eccentric cam 71, the boss 64 of the lever 55 comes relatively into contact with the stepped part 78 and moves toward the second cam surface 76. Because the second cam surface 76 has the eccentric radius that pushes down the boss 64, the lever 55 turns downward and presses the lift plate 33 down by resisting against the bias force of the push-up spring 34. Thereby, the sheet S on the lift plate 33 is separated downward from the pickup roller 41.
It is noted in the process in which the lever 55 is lowered, the rotation of the shaft 70 is transmitted to each returning mechanism 74. Thereby, each returning hook 74a jumps out of the slot 45a of the guide surface 45 in linkage with the drop of the lever 55 and returns the sheet S on the guide surface 45 to the sheet storage part 31 side (on the lift plate 33).
In response to the further advance of the rotation of the eccentric cam 71, the lever 55 moves from the non-pressing position P4 to the pressing position P3 and the lift plate 33 moves from the raised position P2 to the lowered position P1 as shown in
As described above, when the eccentric cam 71 rotates and the boss 64 is locked by the lock part 77, the lever 55 keeps the lift plate 33 at the lowered position P1. Meanwhile, when the eccentric cam 71 rotates and the boss 64 is unlocked from the lock part 77, the lever 55 is lowered within the range in which the support member 57 is elastically deformable and becomes liftable together with the lift plate 33.
According to the conveyance unit 5 of the present embodiment described above, when the eccentric cam 71 rotates from the condition in which the boss 64 is locked by the lock part 77, the lock part 77 rides over the boss 64 and the lever 55 is slightly lowered. At this time, the support member 57 permits the eccentric cam 71 to rotate while suppressing a postural change of the lever 55 by the elastic deformation. This arrangement makes it possible to link the lift of the lift plate 33 with the rotation of the eccentric cam 71.
Still further, according to the conveyance unit 5 of the present embodiment, the transmission mechanism 80 and the restricting unit 82 control the rotation of the eccentric cam 71 through the respective gears 84 and 85 by cooperating with each other. This arrangement makes it possible to control the rotation of the eccentric cam 71 corresponding to a status of conveyance of the sheet S.
Next, an operation of the conveyance interlocked part 44 in the case when the sheet feed cassette 3 is drawn out of the apparatus body 2 will be described with reference to
By the way, when there is no sheet S or there is only few sheets S on the lift plate 33, the lift plate 33 is biased by the push-up spring 34 and is displaced to the raised position P2 (see
Meanwhile, in a case when the sheets S are fully stacked or a large number of sheets are stacked on the lift plate 33, the lift plate 33 is displaced to the lowered position P1 by weight of the sheets S. The sheet feed cassette 3 may be able to be drawn out of the apparatus body 2 (the opening part 2a) also in this state. The lift plate 33 is pressed downward by the pressing mechanism 56 (the eccentric cam 71) through each lever 55 as described above. When the sheet feed cassette 3 is detached out of the apparatus body 2 in this state, each lever 55 separates relatively from the lift plate 33 and is pressed downward by the pressing mechanism 56. At this time, although each lever 55 tries to turn downward, each support member 57 suppresses each lever 55 from being lowered (see
Here, the sheet feed cassette 3 is provided with a lock mechanism not shown to lock the lift plate 33 at the lowered position P1 when the sheet feed cassette 3 is drawn out. When the sheet feed cassette 3 is attached to the apparatus body 2, the lift plate 33 is kept (locked) at the lowered position P1 by the operation of the lock mechanism. The lock mechanism is configured to release the lock of the lift plate 33 in the process of attaching the sheet feed cassette 3 into the apparatus body 2 (just before completing the attachment).
Although not shown, if there is no support member 57, each lever 55 turns downward and the arm part 61 inclines in a lower left direction. If the sheet feed cassette 3 is caused to enter within the apparatus body 2 in this state, there is a possibility that the pressure acting part 33b of the lift plate 33 collides against the arm part 61 of the lever 55. In such a case, there is a possibility that not only the cassette 3 cannot be smoothly attached into the apparatus body 2, but also of breaking the lift plate 33, the lever 55 and others.
In this regard, according to the conveyance unit 5 of the present embodiment, each support member 57 operates so as to suppress the drop of each lever 55 disengaged from the lift plate 33 when the sheet feed cassette 3 is detached from the apparatus body 2. That is, regardless whether or not there is the sheet feed cassette 3, the posture of each lever 55 is kept approximately constant. Du to that, each lever 55 will not become an obstacle in moving the lift plate 33 (the pressure acting part 33b) in the process of attaching the sheet feed cassette 3 into the apparatus body 2. This arrangement makes it possible to smoothly attach the sheet feed cassette 3 into the apparatus body 2 such that each lever 55 engages adequately with the lift plate 33 (the pressure acting part 33b).
Still further, according to the conveyance unit 5 of the present embodiment, the inclined surface 65 is formed at the lower side of the tip part of the arm part 61. Accordingly, each pressure acting part 33b of the lift plate 33 is guided by the inclined surface 65 and enters under the arm part 61 (see
It is noted that while each support member 57 of the conveyance unit 5 of the present embodiment is formed integrally with each lever 55, the present disclosure is not limited to such configuration. For instance, each support member 57 may be provided on the bottom surface of the apparatus body 2 or on the side surface of the guide part 40. That is, each support member 57 is just required to be provided between the each lever member 55 and the apparatus body 2. Still further, although each support member 57 is formed of the synthetic resin material, the material is not limited to be resin and the support member may be formed of an elastic member such as a spring and rubber.
Still further, although the pairs of front and rear levers 55 (the support member 57), the eccentric cams 71 and others have been provided in the conveyance unit 5 of the present embodiment, the present disclosure is not limited to such configuration. For instance, the lever 55 (the support member 57), the eccentric cam 71, and others are just required to be provided at least at either one of the front and rear sides.
While the preferable embodiment and its modified example of the conveyance unit and the image forming apparatus of the present disclosure have been described above and various technically preferable configurations have been illustrated, a technical range of the disclosure is not to be restricted by the description and illustration of the embodiment. Further, the components in the embodiment of the disclosure may be suitably replaced with other components, or variously combined with the other components. The claims are not restricted by the description of the embodiment of the disclosure as mentioned above.
Number | Date | Country | Kind |
---|---|---|---|
2015-050333 | Mar 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8794618 | Kondo | Aug 2014 | B2 |
20080101837 | Cho | May 2008 | A1 |
20120242033 | Hayashi | Sep 2012 | A1 |
20130154184 | Shin | Jun 2013 | A1 |
20130168920 | Shin | Jul 2013 | A1 |
20150276808 | Teranishi | Oct 2015 | A1 |
20150298932 | Mizuno | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2012-218846 | Nov 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20160264367 A1 | Sep 2016 | US |