1. Field of the Invention
Example embodiments relate to a conveying device that conveys a sheet bundle formed by stitching sheet-like recording media such as paper sheets, recording paper, and transfer paper (hereinafter, simply referred to as “sheet”), and by folding the stitched sheet-like recording media; a spine forming device provided with the conveying device and a spine forming unit that forms a back portion of the sheet bundle in a flat shape; and an image forming system provided with the spine forming device and an image forming device.
2. Description of the Related Art
In saddle stitch bookbinding that is widely used as simple bookbinding, the need to make the height of a fold (bulge) smaller after bookbinding is very high. Bound booklets are usually handled in stacks of dozens for transportation, delivery, and the like. However, each of the half folded and saddle stitched booklets has a bulge, which makes them unstable and easy to topple when they are stacked.
More specifically, when a sheet bundle is saddle stitched and folded in the middle (double fold), the double folded sheet bundle is likely to have a bulge in the thickness direction near the folding portion and look unattractive. In addition, when the sheet bundle has the bulge near the folding portion, the back side becomes thicker while the fore-edge side is thinner as a booklet. Accordingly, when the sheet bundles are stacked facing the same direction, the stack becomes more lopsided as more booklets are stacked. Consequently, when a large number of sheet bundles are stacked, the stack topples because of excessive tilting, making it difficult to stack a large number of sheet bundles.
In contrast, when a booklet is formed with the folding portion of a double folded sheet bundle flattened like a spine, the bulge of the booklet is pressed, whereby a large number of such booklets can be stacked. In other words, even a couple of booklets with a bulge topple easily when stacked on a desk, creating a problem in handling such as storage and transportation. When a back portion corresponding to the folding portion is flattened, the bulge can be reduced to a bare minimum, thereby resolving the problem. The back portion here means the portion including a spine that is a back face and portions of a front cover and a rear cover connecting to the spine (hereinafter, referred to as back-face portion), and corresponds to the portion opposite to the fore edge.
As for the techniques specific to flattening a booklet, inventions disclosed in the following three patent documents, for example, are known. In the invention disclosed in Japanese Patent Application Laid-open No. 2001-260564, a front cover and a rear cover of a pamphlet composed of a sheet bundle folded so that a back portion has a curvature are fixed by clamping adjacently to the back portion with a pressing unit, and a forming roller is applied once or more along the lengthwise direction of the projected back portion with a pressure sufficient to smooth out the curvature to flatten the back portion.
Japanese Patent Application Laid-open No. 2007-98874 discloses that, similarly to the invention disclosed in Japanese Patent Application Laid-open No. 2001-260564, a folding portion of a saddle stitched booklet is clamped and a back face of the booklet is pressed by moving a roller to flatten the folding portion so as to reduce the height of the fold. However, when delivering the flattened booklet, the booklet is conveyed downstream by an ordinary roller pair.
These inventions have an effect of flattening the curvature of the back portion. However, because a face is formed at the back portion of the booklet by locally and continuously pressing the back portion with a pressing roller, wrinkles and tears are likely to occur on the back face and in the stitched portion. In addition, the roller is moved along the folding portion, resulting in a long forming time.
Japanese Patent Application Laid-open No. 2007-237562 discloses a sheet bundle forming device including: a clamping unit that clamps a portion other than a periphery of the back portion of a folded sheet bundle in the thickness direction; a back portion pressing unit that presses the back portion in the direction toward the fore edge and opposite to the back portion by pressing a back portion pressing face formed on a back portion pressing member to the back portion of the clamped sheet bundle; and a compressing unit that forms the periphery of the back portion of the sheet bundle by compressing the periphery of the pressed sheet bundle in the thickness direction. In this invention, the compressing unit compresses the portions of the front cover and the rear cover near the fold having a bulge resulted by pressing the back portion in the fore edge direction by the back portion pressing unit, in an attempt to reduce the bulge.
However, as in the invention disclosed in Japanese Patent Application Laid-open No. 2001-260564, when the projected portion is partially deformed by the contact of the roller, wrinkles and the like tend to appear in a direction perpendicular to the fold, giving it an unattractive appearance. Furthermore, when the size of the sheet is larger, because of the traveling time of the roller required, productivity may deteriorate depending on the number of sheets in a bundle. More specifically, due to the recent circumstances of energy conservation, in a device of this type, it is important to obtain an energy saving effect by efficiently operating the device. Generally, when efficiency is considered, the processing conditions such as the pressure applied and the amount of repetitions differ depending on the number of sheets, paper thickness, and paper type. However, in work using a roller as disclosed in Japanese Patent Application Laid-open No. 2001-260564, the fact that the number of repeats of the roller run is the only option available leads to a problem in that the work cannot be performed under the most efficient condition.
In the invention disclosed in Japanese Patent Application Laid-open No. 2007-98874, because the booklet is conveyed by the ordinary roller pair at the time of delivery, the leading end (stitched portion) of the flattened booklet is gripped by the nip of the roller pair. Consequently, the folding portion is deformed when gripped by the nip, and in the worst case, wrinkles, smudges, and the like appear on the flattened portion, deteriorating the quality of bookbinding. Particularly, when the booklet has a large number of sheets and is thick, the contact angle with respect to the outer circumference of the roller becomes large, making the damage to the back-face portion of the booklet more prominent. To prevent this, the diameter of the roller could be increased so as to make the contact angle smaller. However, when the diameter of the roller is increased, a space is required to accommodate that increased diameter roller.
In the invention disclosed in Japanese Patent Application Laid-open No. 2007-237562, the occurrence of wrinkles and tears can be reduced and the face can be formed on the back portion of the booklet. However, to press the back portion in the fore edge direction and then to flatten the front cover and the rear cover by compressing them with the compressing unit, the multiple units of the clamping unit, the back portion pressing unit, the compressing unit, and the like need to be operated in sequence after the booklet is stopped by abutting on a stop plate. This results in an insufficient effect of shortening the working time.
It is an object of example embodiments to at least partially solve the problems in the conventional technology.
According to one aspect of an example embodiment of the present invention, there is provided a conveying device that conveys a sheet bundle with a flattened back-face portion. The conveying device includes a first conveying unit, a driving unit, and a second conveying unit. The first conveying unit retracts to a position where no driving force is exerted on the sheet bundle before a leading end of the sheet bundle formed in a flat spine shape enters, and abuts on the sheet bundle to exert conveying force after the leading end of the sheet bundle passes a conveying position. The driving unit moves the first conveying unit to retract to the position and to abut on the sheet bundle. The second conveying unit is positioned on an upstream side of the first conveying unit in a sheet bundle conveying direction, and conveys the sheet bundle towards the first conveying unit.
According to another aspect of an example embodiment of the present invention, there is provided a spine forming device including: a conveying device and a spine forming unit. The conveying device conveys a sheet bundle with a flattened back-face portion. The conveying device includes a first conveying unit, a driving unit, and a second conveying unit. The first conveying unit retracts to a position where no driving force is exerted on the sheet bundle before a leading end of the sheet bundle formed in a flat spine shape enters and, abuts on the sheet bundle to exert conveying force after the leading end of the sheet bundle passes a conveying position. The driving unit moves the first conveying unit to retract to the position and to abut on the sheet bundle. The second conveying unit is positioned on an upstream side of the first conveying unit in a sheet bundle conveying direction and conveys the sheet bundle towards the first conveying unit. The spine forming unit forms the spine shape by flattening out from a leading end of a folding portion of the sheet bundle and from both sides of the sheet bundle. The spine forming unit is arranged on an upstream side of the first conveying unit and on a downstream side of the second conveying unit.
According to still another aspect of an example embodiment of the present invention, there is provided an image forming system including an image forming device and a spine forming device. The image forming device forms an image on a sheet. The spine forming device includes a conveying device that conveys a sheet bundle with a flattened back-face portion. The conveying device includes a first conveying unit, a driving unit, and a second conveying unit. The first conveying unit retracts to a position where no driving force is exerted on the sheet bundle before a leading end of the sheet bundle formed in a flat spine shape enters, and abuts on the sheet bundle to exert conveying force after the leading end of the sheet bundle passes a conveying position. The driving unit moves the first conveying unit to retract to the position and to abut on the sheet bundle. The second conveying unit is positioned on an upstream side of the first conveying unit in a sheet bundle conveying direction, and conveys the sheet bundle towards the first conveying unit. The spine forming unit forms the spine shape by flattening out from a leading end of a folding portion of the sheet bundle and from both sides of the sheet bundle. The spine forming unit is arranged on an upstream side of the first conveying unit and on a downstream side of the second conveying unit.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Example embodiments form nearly right angles between the back face including the folding portion and the portions of the front cover and the rear cover, such that a so-called square spine is formed by flatly forming a folding portion of a sheet bundle that forms a booklet and by flattening with pressure a back-face portion of the booklet that includes the folding portion and portions of a front cover and a rear cover near the folding portion. This allows a large number of booklets to be stacked flatly without causing any problems in handling such as storage, transportation, and the like. To form a spine in such a way, a conveying unit, conveying guide plates, an auxiliary clamping unit, a pressure clamping unit, and a stop unit are arranged in this order from the upstream side of the sheet bundle in the conveying direction. A sheet bundle that is saddle stitched and folded in the middle is conveyed by the conveying unit to abut on the stop unit that lies on the most downstream side so as to form a bulge at the leading end of the sheet bundle in the conveying path, and the sheet bundle is stopped and held fixed. The clamping clearances of the conveying guide plates on the upstream side, the auxiliary clamping unit, and the pressure clamping unit are then narrowed sequentially in that order to apply pressure such that the bulge is converged towards the downstream in sequence. Finally, while the leading end of the sheet bundle is being pressed against the stop unit, the sheet bundle is clamped and pressure is applied thereon by the pressure clamping unit. This forms the back-face portion of the sheet bundle in an angular U-shape viewed from the top fore-edge side.
In this case, a delivery conveying unit is configured with a pair of rollers that conveys the booklet in a delivery direction and at least one of which is movable between a pressure contacting position where the pair of rollers comes closer to each other and a separated position where the pair of rollers remains apart from each other. Delivery conveying members are moved to the retracted position before a flat face formed portion of the booklet conveyed by the conveying unit reaches conveying members of the delivery conveying unit and, before the trailing end of the booklet reaches the pair of conveying members, the pair of delivery conveying members is moved to the contacting position to convey the booklet in the delivery direction. This prevents the shape of the spine from being damaged because the pressure is not exerted on the flat face formed portion of the booklet when it enters the nip of the rollers.
Exemplary embodiments according to the present invention are described below in greater detail with reference to the accompanying drawings. In the following description, the same reference numerals and marks are given to equivalent elements, and redundant explanations are appropriately omitted.
In the outline of this system, a saddle stitching process is performed to a sheet bundle fed from sheet bundle delivery rollers 10 of a sheet post-processing device 1 into a saddle stitch processing device 2. The sheet bundle is folded in the middle and then conveyed from lower delivery rollers 231 to a spine forming device 3. The spine forming device 3 forms a folding portion (back-face portion) of the sheet bundle into a flat shape and delivers the sheet bundle to outside of the device. An image forming device 100 is a device that forms a visible image on a sheet-like recording medium based on image data input or image data of a scanned image and that corresponds to, for example, a copier, a printer, a facsimile, and a digital multifunction product (see MFP in
On the downstream side of the entrance rollers 201 in the entrance conveying path 241, a branching claw 202 is provided. The branching claw 202 is arranged in a horizontal direction in the drawing, and the conveying direction of the sheet bundle is diverged to the sheet-through conveying path 242 or to the middle folding conveying path 243 by the branching claw 202. The sheet-through conveying path 242 extended horizontally from the entrance conveying path 241 is a conveying path to lead the sheet bundle to a processing device or a catch tray in a subsequent stage not indicated, and the sheet bundle is delivered to the subsequent stage by upper delivery rollers 203. The middle folding conveying path 243 is a conveying path that extends below in a vertical direction from the branching claw 202 to perform saddle stitching and middle folding to the sheet bundle.
The middle folding conveying path 243 is provided with an upper bundle conveying guide plate 207 that guides the sheet bundle above a folding plate 215 for middle folding and a lower bundle conveying guide plate 208 that guides the sheet bundle below of the folding plate 215. On the upper bundle conveying guide plate 207, from the top, upper bundle conveying rollers 205, a trailing end tapping claw 221, and lower bundle conveying rollers 206 are provided. The trailing end tapping claw 221 is mounted in a standing manner on a trailing end tapping claw drive belt 222 driven by a drive motor not indicated. The trailing end tapping claw 221 aligns the sheet bundle by tapping (pressing) the trailing end of the sheet bundle on a later-described movable fence by the reciprocating rotational movement of the trailing end tapping claw drive belt 222. When the sheet bundle is fed and when the sheet bundle is raised for middle folding, the trailing end tapping claw 221 is retracted from the middle folding conveying path 243 along the upper bundle conveying guide plate 207 (position indicated by a broken line in
On the lower bundle conveying guide plate 208, from the top, a saddle stitching stapler S1, a pair of saddle stitching jogger fences 225, and a movable fence 210 are provided. The lower bundle conveying guide plate 208 is a guiding plate that receives the sheet bundle conveyed through the upper bundle conveying guide plate 207, and is arranged with the pair of saddle stitching jogger fences 225 in the width direction and with the movable fence 210 below that abuts (supports) the leading end of the sheet bundle and is movable vertically.
The saddle stitching stapler S1 is a stapler that staples the mid-portion of the sheet bundle. The movable fence 210 moves in the vertical direction while supporting the leading end of the sheet bundle and positions the middle position of the sheet bundle to the position facing the saddle stitching stapler S1 where stapling process, i.e., saddle stitching, is performed. The movable fence 210 is supported by a movable fence drive mechanism 210a and is movable from the position of a movable fence HP sensor 292 above in the drawing to the lowest position. As the movable range of the movable fence 210 on which the leading end of the sheet bundle abuts, a sufficient stroke is ensured to process the sheet bundle from a minimum size to a maximum size that the saddle stitch bookbinding device 2 can handle. As for the movable fence drive mechanism 210a, for example, a rack and pinion mechanism is used.
Between the upper bundle conveying guide plate 207 and the lower bundle conveying guide plate 208, i.e., near the mid portion of the middle folding conveying path 243, the folding plate 215, a folding roller pair 230, a delivery conveying path 244, and lower delivery rollers 231 are provided. The folding plate 215 is operable to reciprocate in the horizontal direction in the drawing and, in the operating direction of folding operation, the nip of the folding roller pair 230 is located and the delivery conveying path 244 is arranged in the extension thereof. The lower delivery rollers 231 are arranged at the most downstream of the delivery conveying path 244 and deliver the folded sheet bundle to the subsequent stage.
At the lower end of the upper bundle conveying guide plate 207, a sheet bundle detecting sensor 291 is provided to detect the leading end of the sheet bundle that is fed into the middle folding conveying path 243 and passes through the middle folding position. On the delivery conveying path 244, a folding portion passage sensor 293 is provided to detect the leading end of the middle-folded sheet bundle, thereby recognizing the passage of the sheet bundle.
In the saddle stitch bookbinding device 2 configured as schematically illustrated in
The sheet bundle SB fed into the middle folding conveying path 243 is conveyed downwards through the middle folding conveying path 243 by the entrance rollers 201 and the upper bundle conveying rollers 205 and, after its passage is confirmed by the sheet bundle detecting sensor 291, is conveyed by the lower bundle conveying rollers 206 to the position where the leading end of the sheet bundle SB abuts on the movable fence 210 as indicated in
Under this condition, as indicated in
Aligning operations are then performed by the saddle stitching jogger fences 225 in the width direction (direction orthogonal to the sheet conveying direction) and by the movable fence 210 and the trailing end tapping claw 221 in the conveying direction to complete the aligning operations in the width direction and the conveying direction of the sheet bundle SB. In this case, the pressing amount of the trailing end tapping claw 221 and the saddle stitching jogger fences 225 are changed to optimal values to align based on the information of sheet size, the information of number of sheets as sheet bundle configuration information constituting the sheet bundle, and the information of sheet bundle thickness. In addition to the information of size, number of sheets, and thickness, special paper information indicative of a special sheet is also used in a later-described mode setting.
When the sheet bundle is thick, the space in the conveying paths is reduced and only a single aligning operation is often not enough to align the bundle. Accordingly, in such a case, the amount of aligning operations is increased. Consequently, a better aligned state can be realized. Furthermore, the fact that the time it takes to sequentially place the sheet one on top of another on the upstream side increases as the number of sheets is increased, resulting in increased time until the subsequent sheet bundle SB is received. As a result, there is no time loss throughout the system even when the amount of aligning operations is increased, which efficiently realizes a better aligned state. This makes it possible to control the amount of aligning operations corresponding to the processing time on the upstream side.
The waiting position of the movable fence 210 is normally set at the position where the saddle stitching position of the sheet bundle SB faces the stapling position of the saddle stitching stapler S1. This is because when the aligning operation is performed at this position, the stapling process can be performed at the stacked position without moving the movable fence 210 to the saddle stitching position of the sheet bundle SB. At this waiting position, a stitcher of the saddle stitching stapler S1 is driven to the middle portion of the sheet bundle SB in the arrow b direction, and the stapling process is performed between a clincher and the stitcher to saddle stitch the sheet bundle SB.
The position of the movable fence 210 is determined by pulse control from the movable fence HP sensor 292, and the position of the trailing end tapping claw 221 is determined by pulse control from the trailing end tapping claw HP sensor 294. The position determining controls for the movable fence 210 and the trailing end tapping claw 221 are carried out by a CPU 2-1 of a control circuit in the saddle stitch bookbinding device 2 (see
The sheet bundle SB saddle stitched under the condition indicated in
When the sheet bundle SB reaches the position indicated in
The sheet bundle SB double folded in the middle under the condition indicated in
The conveying unit is provided with upper and lower conveyor belts 311 and 312, the auxiliary clamping unit is provided with upper and lower conveying guide plates 315 and 316 and upper and lower auxiliary clamping plates 320 and 321, the pressure clamping unit is provided with upper and lower pressure clamping plates 325 and 326, the stop unit is provided with a stop plate 330, and the delivering unit is provided with delivery guide plates 335 and upper and lower delivery rollers 340 and 341 to constitute the spine forming device 3. These units indicated in
The upper conveyor belt 311 and the lower conveyor belt 312 are wound around drive pulleys 311b and 312b pivotally supported on rocking fulcrum points 311a and 312a and follower pulleys 311c and 312c located on the downstream side of the drive pulleys 311b and 312b, respectively, arranged to face each other with a conveying center 301 therebetween that is set as an extension of a line connecting the folding plate 215, the nip of the folding roller pair 230, and the nip of the lower delivery rollers 231, and are driven by a drive motor not indicated. The rocking fulcrum points 311a and 312a support the upper and the lower conveyor belts 311 and 312, respectively, such that the clearance between the follower pulleys 311c and 312c can accordingly follow the thickness of the sheet bundle SB.
Meanwhile, the rotational shafts of the follower pulleys 311c and 312c are connected with links 313 composed of two members rotatably coupled by a coupling shaft 313a and are elastically biased constantly by a pressure spring 314 in a direction to bring them closer to each other. The coupling shaft 313a is movable along a long hole 313b provided on a housing of the spine forming device 3 and extending in the conveying direction. Consequently, the coupling shaft 313a moves, as indicated in
The coupling shaft 313a may be adapted, for example, to be movable along the long hole 313b by a rack and pinion mechanism so that the position of the coupling shaft 313a is moved by controlling a drive motor that drives the pinion. By arranging in such a manner, when the sheet bundle SB is thick, a conveying clearance for accepting the sheet bundle SB (clearance of the nip between the follower pulleys 311c and 312c) can be set, thereby alleviating the pressure exerted on the sheet bundle SB when the upper and the lower conveyor belts 311 and 312 on the follower pulley side run upon the leading end SB1 of the folding portion of the sheet bundle SB. Once the upper and the lower conveyor belts 311 and 312 operate on the sheet bundle SB, stopping supply of power to the drive motor makes the follower pulleys 311c and 312c clamp the sheet bundle SB only with the elastic bias of the pressure spring 314 to exert conveying power.
As illustrated in
The auxiliary clamping unit provided with the upper and the lower auxiliary clamping plates 320 and 321, similarly to an approaching and separating mechanism constituted by the upper and the lower conveyor belts 311 and 312 in the conveying unit, moves symmetrically to approach to and to separate from the conveying center 301. The approaching and separating mechanism provided to the auxiliary clamping unit can be configured using a linking mechanism or a coupling mechanism with racks and sector gears explained for the conveying unit.
The reference position for detecting a displacement position is determined by a detection output of an auxiliary clamping plate HP sensor SN3. The fact that a driving mechanism not indicated and the upper and the lower auxiliary clamping plates 320 and 321 are coupled via a spring or the like, similarly to the pressure spring 314 in the conveying unit, prevents the driving mechanism from being damaged by overloading when clamping the sheet bundle SB. Each of the pressure clamping planes of the upper and the lower auxiliary clamping plates 320 and 321 that clamps the sheet bundle SB is in a flat plane in parallel with respect to the conveying direction, i.e., the conveying center 301.
The pressure clamping unit is provided with the upper and the lower pressure clamping plates 325 and 326. The upper and the lower pressure clamping plates 325 and 326, similarly to the approaching and separating mechanism by the upper and the lower conveyor belts 311 and 312 in the conveying unit, moves symmetrically to approach to and to separate from the conveying center 301. The approaching and separating mechanism provided to the pressure clamping unit can be configured using a linking mechanism or a coupling mechanism with racks and sector gears explained for the conveying unit. As for the upper and the lower pressure clamping plates 325 and 326, the reference position for detecting a displacement position is determined by a detection output of a pressure clamping plate HP sensor SN4. The operation and other structures are similar to those of the auxiliary clamping plates 320 and 321 and thus, their explanations are omitted. While the drive motor in the conveying unit is not essential, the drive motor or other driving sources are essential in the auxiliary clamping unit and the pressure clamping unit. The auxiliary clamping unit and the pressure clamping unit are enabled to move to a clamping position of the sheet bundle SB and a retracted position by the driving force of the drive motor or the other driving sources. Each of the pressure clamping planes of the upper and the lower pressure clamping plates 325 and 326 that clamps the sheet bundle SB, as similar to those of the auxiliary clamping plates 320 and 321, is in a flat plane in parallel with respect to the conveying direction, i.e., the conveying center 301.
The stop unit is provided downstream of the pressure clamping unit. The stop unit is composed of the stop plate 330 and a moving mechanism not indicated that lifts and lowers the stop plate 330. The stop plate 330 advances and retracts with respect to the conveying path 302, and the reference position for detecting its displacement position is determined by a detection output of a stop plate HP sensor SN5. The top surface of the stop plate 330 in the retracted position from the conveying path 302 serves as a conveying guide for the sheet bundle SB. Accordingly, the top surface is formed as a flat plane in parallel with the sheet conveying direction, i.e., the conveying center 301. The moving mechanism can be configured, for example, with a rack and pinion mechanism, not indicated, provided on both sides of the stop plate 330 (on the front side and the rear side of the device) and a drive motor that drives the pinion. With the structure thus configured, the stop plate 330 can be lifted and lowered by the drive of the drive motor and further, be positioned to a predetermined position.
The upper and the lower conveying guide plates 315 and 316, the auxiliary clamping plates 320 and 321, the pressure clamping plates 325 and 326, and the stop plate 330 can be screw driven.
The threaded shafts 361a, 362a, 363a, and 364a are provided on the back side of the spine forming device 3 outside the range of sheet bundle passage, and guiding rods not indicated are provided on the front side out of the range of sheet bundle passage. Accordingly, the upper and the lower conveying guide plates 315 and 316, the auxiliary clamping plates 320 and 321, the pressure clamping plates 325 and 326, and the stop plate 330 can perform lifting and lowering operations in parallel along the threaded shafts 361a, 362a, 363a, and 364a that are screwed with the respective plates and the guiding rods that slidably guide the respective plates.
The delivering unit is provided downstream of the stop unit. The delivering unit is configured with the delivery guide plates 335 and the upper and the lower delivery rollers 340 and 341, and the spine formed sheet bundle SB is delivered out of the device by the delivery rollers 340 and 341. The delivery rollers 340 and 341 have a later-described roller separating mechanism that remains in a separated state when the back-face portion passes and that presses the booklet to be delivered after the flatly formed back-face portion passes. The stopping position in spine forming process and the timing of separating and pressing of the delivery rollers 340 and 341 are controlled based on the conveying amount from the position where the leading end of the sheet bundle is detected by a conveying sensor SN1.
The conveying amount is set to be a sum of a distance of the leading end of the sheet bundle SB to abut on the stop plate 330 and a distance necessary to cause a bulge required for forming the leading end of the sheet bundle SB. The conveying amount is determined by managing pulses or controlling an encoder of the drive motor. On an immediate upstream side of the lower delivery roller 341, a delivery sensor SN2 is provided to detect passage of the sheet bundle SB through the conveying path 302.
In response to a sheet bundle detecting signal from an entrance sensor of the spine forming device 3 not indicated or from the folding portion passage sensor 293 of the saddle stitch bookbinding device 2, the respective units of the spine forming device 3 prepare for receiving sheets. In the sheet receiving preparation, the upper conveyor belt 311 and the lower conveyor belt 312 start rotating, the upper auxiliary clamping plate 320 and the lower auxiliary clamping plate 321 once move to the detecting position of the auxiliary clamping plate HP sensor SN3, i.e., its home position, and then move towards the conveying center 301 to make a predetermined conveying gap (separating distance) and stop there. The upper pressure clamping plate 325 and the lower pressure clamping plate 326 also move to the detecting position of the pressure clamping plate HP sensor SN4 (home position) and thereafter, move towards the conveying center 301 to make a predetermined conveying gap (separating distance) and stop there. Because the upper and the lower auxiliary clamping plates 320 and 321 and the upper and the lower pressure clamping plates 325 and 326 are arranged symmetrically and operate symmetrically with respect to the conveying center 301, when the respective home positions of one side are detected, those of the other side are assumed to be in the same state. Accordingly, the HP sensors SN3 and SN4 are provided only on one side. The stop plate 330 moves to the detecting position of the stop plate HP sensor SN5 (home position) and then moves towards the conveying center 301 for a predetermined distance and stops at the position blocking the conveying path 302. This condition corresponds to the condition illustrated in
Under this condition, the sheet bundle SB delivered from the lower delivery rollers 231 of the saddle stitch bookbinding device 2 and fed to the spine forming device 3, as illustrated in
When the sheet bundle SB is stopped under the condition illustrated in
From the pressure clamping state by the upper and the lower auxiliary clamping plates 320 and 321 as illustrated in
Thereafter, as illustrated in
The upper and the lower conveyor belts 311 and 312 and the upper and the lower delivery rollers 340 and 341 that are rotating stop in a predetermined timing based on the detection information of the delivery sensor SN2. In time with that, the other movable units move to their respective home positions. When the sheet bundle SB is continuously conveyed from the saddle stitch bookbinding device 2, the timings to stop rotation of the upper and the lower conveyor belts 311 and 312 and the upper and the lower delivery rollers 340 and 341 are changed depending on the conveying condition of the subsequent sheet bundle SB. Further, the other movable units are not necessarily required to return to their home positions every time, and the receiving position of the sheet bundle SB may also be moved corresponding to the conveying condition and the sheet bundle SB information. These controls are carried out by a CPU 3-1 of a control circuit in the spine forming device 3.
The control circuits are configured online as illustrated in
The CPU 100-1 installed in the image forming device 100, the CPU 1-1 installed in the sheet post-processing device 1, the CPU 2-1 installed in the saddle stitch processing device 2, and the CPU-3-1 installed in the spine forming device 3 read out program codes stored in respective ROMs installed in the image forming device 100, the sheet post-processing device 1, the saddle stitch processing device 2, and the spine forming device 3, deploy the codes to respective RAMs, and use the RAMs as working areas to execute programs described in the program codes. Consequently, the foregoing or subsequently described various controls and processes are carried out. These devices are serially connected in a line (in-line) through the communication port 100-2, the communication port 1-2, the communication port 1-3, the communication port 2-2, the communication port 2-3, and the communication port 3-2. When processing online, communication is performed with the CPU 100-1 of the image forming device 100, and the CPU 1-1, the CPU 2-1, and the CPU 3-1 operate under the control of the CPU 100-1 based on the control information output from the CPU 100-1 of the image forming device 100.
In the present embodiment, in-line means that the processes from image forming to sheet processing, saddle stitching or spine forming of a booklet are all processed in a single continuous flow of a sheet. The control information includes the sheet bundle SB information, and the sheet bundle SB information includes the information of at least number of sheets and paper thickness, from out of the information of number of sheets, paper thickness, size, or special paper. When the special paper information is included, the information indicative of OHP transparency, label paper, coated paper, irregular shaped paper with fold, or perforated paper is added for determining the type of the special paper.
The CPU 100-1 of the image forming device 100, the CPU 1-1 of the sheet post-processing device 1, the CPU 2-1 of the saddle stitching device 2, the CPU 3-1 of the spine forming device 3, storage devices including the ROMs and the RAMs not indicated, the operation panel 105 of the MFP 100, and the like function as resources when the computer performs the spine forming process.
The open-close drive motor 603 is a stepping motor and rotates to a pressing position being pulse controlled based on the home position of the crank 602 detected by a home position sensor SN10. In the example illustrated in
In
In place of the open-close drive motor 603, a solenoid may also be used.
According to the present embodiment, in the spine forming device 3, from the upstream side, the conveyor belts 311 and 312, the conveying guide plates 315 and 316, the auxiliary clamping plates 320 and 321, the pressure clamping plates 325 and 326, the stop plate 330, and the delivery rollers 340 and 341 are provided being arranged in that order, and the link 601 that positions the delivery rollers 340 and 341 to the pressure contacting position where the both delivery rollers come close to each other, and the separated position and the crank 602 that drives the link 601 are further provided. The crank 602 is driven by the open-close drive motor 603 such that the delivery rollers 340 and 341 are separated before the flattened face formed on the back-face portion of the booklet reaches the conveying position of the upper and the lower delivery rollers 340 and 341, and are moved to the position where the delivery rollers 340 and 341 contact the surfaces of the booklet (front cover and rear cover) before the trailing end of the booklet reaches the delivery rollers 340 and 341 to convey the booklet in the delivery direction. Accordingly, the rollers of the delivery rollers 340 and 341 do not contact the corners formed by flattening the back-face portion of the booklet. As a consequence, the corners can be prevented from bearing excessive force of the nip of the rollers, making it possible to prevent deformed wrinkles, tears, and the like from forming in the flattened back-face portion (stitching portion). In this case, because it is not necessary to make the diameter of the delivery rollers 340 and 341 large, the device is prevented from growing in size.
In previously-described exemplary embodiments, a sheet bundle corresponds to a reference mark SB; a first conveying unit corresponds to an upper delivery roller 340 and a lower delivery roller 341; a driving unit corresponds to a link 601, a crank 602, and an open-close drive motor 603; a second conveying unit corresponds to an upper conveyor belt 311 and a lower conveyor belt 312; a stop unit corresponds to a stop plate 330; a first pressure clamping unit corresponds to an upper auxiliary clamping plate 320 and a lower auxiliary clamping plate 321; a second pressure clamping unit corresponds to an upper pressure clamping plate 325 and a lower pressure clamping plate 326; a spine forming device corresponds to a reference numeral 3; and an image forming device corresponds to a reference numeral 100. A conveying position corresponds to a nip position between the upper delivery roller 340 and the lower delivery roller 341. The configurations according to the present invention as described have a small-footprint and prevent wrinkles, tears, and the like from appearing on the spine of a sheet bundle or at the corners forming the spine, thereby ensuring the high quality finish of the spine formed portion.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2009-250840 | Oct 2009 | JP | national |
This application is a Divisional of U.S. application Ser. No. 12/923,896 filed Oct. 13, 2010, which claims priority from Japanese Patent Application No. 2009-250840 filed in Japan on Oct. 30, 2009, the contents of the applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6575446 | Wakabayashi et al. | Jun 2003 | B2 |
6905118 | Yamada et al. | Jun 2005 | B2 |
7000912 | Tamura et al. | Feb 2006 | B2 |
7328892 | Asami et al. | Feb 2008 | B2 |
7552917 | Hayashi et al. | Jun 2009 | B2 |
7975999 | Fukasawa et al. | Jul 2011 | B2 |
20080211158 | Fukasawa et al. | Sep 2008 | A1 |
20090137374 | Kobayashi et al. | May 2009 | A1 |
20090152789 | Kikkawa et al. | Jun 2009 | A1 |
20090200725 | Tamura et al. | Aug 2009 | A1 |
20090258774 | Suzuki et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2001-260564 | Sep 2001 | JP |
2007-098874 | Apr 2007 | JP |
2007-237562 | Sep 2007 | JP |
2007237562 | Sep 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20120269601 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12923896 | Oct 2010 | US |
Child | 13534474 | US |