The present application claims priority from Japanese Patent Application No. 2014-073836, which was filed on Mar. 31, 2014, the disclosure of which is herein incorporated by reference in its entirety.
1. Technical Field
The present invention relates to a conveying device configured to convey a sheet along a conveyance path.
2. Description of the Related Art
There is known a conveying device including a housing in which a conveyance path is defined, and a sheet is conveyed by a conveying roller pair along the conveyance path. To perform maintenance and clear paper jam in the conveyance path, for example, the housing of the conveying device has an opening through which the conveyance path is accessible by a user. The opening can be opened and closed by a cover. Also, there is known a mechanism in which a nip of the conveying roller pair is released in conjunction with the opening of the cover.
A nip force of the conveying roller pair is set with consideration of a relationship between the nip force of the conveying roller pair and forces by which other rollers convey a sheet (e.g., a frictional force and a nip force applied to the sheet). For example, by increasing a force of the conveying roller pair for conveying the sheet, i.e., a nip force of the conveying roller pair, with respect to a force of a sheet-supply roller for conveying a sheet, a conveying speed and a conveying distance of a sheet contacting the sheet-supply roller and nipped by the conveying roller pair are controlled depending principally upon a rotational speed and a rotation amount of the conveying roller pair. As thus described, the nip force of the conveying roller pair affects the conveying speed and the conveying distance of the sheet. Accordingly, the nip force of the conveying roller pair is preferably stable as designed.
In the above-described mechanism in which the nip of the roller pair is released in relation to a plurality of components, however, tolerance or play of the plurality of components may change the nip force of the conveying roller pair when the cover is opened or closed, for example.
Accordingly, an aspect of the disclosure relates to a conveying device capable of reducing a nip force of a first roller and a second roller with opening of a guide member and capable of stably restoring the nip force of the first roller and the second roller when the guide member is closed.
In one aspect of the disclosure, a conveying device includes: a housing formed with a conveyance path; a first roller disposed on the conveyance path; a second roller which is opposed to the first roller; a guide member whose state is changeable between a first state in which the guide member defines a part of the conveyance path and a second state in which the guide member exposes the conveyance path; a roller holder supporting the second roller; an urging force applier configured to apply, to the second roller, an urging force in a first direction directed from the second roller toward the first roller; and an urging force adjuster configured to adjust the urging force to a first value when the guide member is in the first state and adjust the urging force to a second value when the guide member is in the second state, the second value being less than the first value.
The objects, features, advantages, and technical and industrial significance of the present disclosure will be better understood by reading the following detailed description of the embodiment, when considered in connection with the accompanying drawings, in which:
Hereinafter, there will be described one embodiment by reference to the drawings. It is to be understood that the following embodiment is described only by way of example, and the disclosure may be otherwise embodied with various modifications without departing from the scope and spirit of the disclosure. A multi-function peripheral (MFP) 10 is used in a state illustrated in
As illustrated in
A scanning unit 12 is provided in an upper portion of the housing 14. The scanning unit 12 is constituted as what is called a flatbed scanner, and a detailed explanation of an internal structure of the scanning unit 12 is omitted.
A printing unit 11 (as one example of a conveying device) is provided in a lower portion of the housing 14. The printing unit 11 has an ink jetprinting function for recording an image on a recording sheet. Devices and components provided in the housing 14 include a base frame 83, a pair of side frames 55, guide rails 56, 57, a supply tray 20, a conveyance path 65, a recording device 24, roller pairs 59, 44, guide members 18, 19, 31, and a roller holder 85.
As illustrated in
The base frame 83 is a resin frame forming a skeletal portion of a lower portion of the printing unit 11. The pair of side frames 55 are spaced apart from each other in the right and left direction 9. The side frames 55 are respectively disposed on right and left sides of the conveyance path 65. Each of the side frames 55 is a metal frame. The side frames 55 are supported by the base frame 83. The side frames 55 are secured to the base frame 83 by, e.g., screws.
The guide rails 56, 57 are spaced apart from each other in the front and rear direction 8. The guide rail 56 is one example of a frame. Each of the guide rails 56, 57 is a metal frame. Each of the guide rails 56, 57 is supported by the pair of side frames 55. Protruding portions 69 formed on the side frames 55 are respectively fitted in openings 68 formed in the guide rails 56, 57. As a result, each of the side frames 55 is coupled to the guide rails 56, 57. It is noted that the side frames 55 and the guide rails 56, 57 may be coupled to each other by methods other than the above-described one, for example, the side frames 55 and the guide rails 56, 57 may be coupled to each other by screws. The guide rails 56, 57 will be explained later in more detail.
As illustrated in
An uppermost one of the recording sheets placed on the bottom plate 22 is supplied to a curved portion 33 of the conveyance path 65 by a supply roller, not shown, which is provided above the bottom plate 22.
An output tray 21 is provided over the supply tray 20. The output tray 21 is moved in the front and rear direction 8 together with the supply tray 20. The recording sheet printed by the recording device 24 is discharged onto an upper surface of the output tray 21.
As illustrated in
The curved portion 33 is defined by the outer guide member 18 (as one example of a guide member), the roller holder 85, an inclined plate 23, and the inner guide member 19. The outer guide member 18, the roller holder 85, and the inclined plate 23 are opposed to and spaced apart from the inner guide member 19. The extending portion 34 is defined by the roller holder 85, the recording device 24, the upper guide member 31, the inner guide member 19, and a platen 42. In other words, the roller holder 85 defines at least a portion of the curved portion 33 and the extending portion 34. It is noted that the roller holder 85 may define at least a portion of only one of the curved portion 33 and the extending portion 34.
The recording sheet supported by the supply tray 20 is supplied by the supply roller to the inclined plate 23 provided on the supply tray 20. The inclined plate 23 changes a direction of travel of the recording sheet to supply the recording sheet into the curved portion 33. The recording sheet supplied into the curved portion is conveyed from a lower end to an upper end of the curved portion 33 and then to the conveying roller pair 59. The recording sheet nipped by the conveying roller pair 59 is conveyed in the front and rear direction 8 through the extending portion 34 toward the recording device 24. Under the recording device 24, the recording device 24 records an image on the conveyed recording sheet. The recording sheet on which the image has been recorded is conveyed further in the front and rear direction 8 through the extending portion 34 and discharged onto the output tray 21. In view of the above, the recording sheet is conveyed in a conveying direction 15 indicated by the one-dot chain line arrow in
As illustrated in
The recording device 24 includes a carriage 40 and a recording head 38. The carriage 40 is supported by the guide rails 56, 57 so as to be reciprocable in the right and left direction 9. A rear end portion 40A of the carriage 40 is held in contact with an upper surface 99 (as one example of a first contact surface) of the guide rail 56. A front end portion 40B of the carriage 40 is held in contact with an upper surface 100 of the guide rail 57.
The recording head 38 is mounted on the carriage 40. Ink is supplied from an ink cartridge, not shown, to the recording head 38. A lower surface 32 of the recording head 38 has a multiplicity of nozzles, not shown. During movement of the carriage 40 in the right and left direction 9, the recording head 38 ejects ink droplets from the nozzles toward the platen 42. As a result, an image is formed on the recording sheet conveyed along the extending portion 34 and supported on the platen 42.
As illustrated in
The conveying roller pair 59 includes: a conveying roller 60 (as one example of a first roller) disposed on a lower side of the extending portion 34; and pinch rollers 61 (each as one example of a second roller) disposed on an upper side of the extending portion 34 and opposed to the conveying roller 60. The conveying roller 60 is rotated, with the right and left direction 9 being as its axial direction. The pinch rollers 61 are spaced apart from each other in the right and left direction 9. Each of the pinch rollers 61 is rotated, with the right and left direction 9 being as its axial direction. Each of the pinch rollers 61 is pressed onto the conveying roller 60 respectively by coil springs 73.
The conveying roller 60 is rotatably supported by the pair of side frames 55 (see
The output roller pair 44 includes: an output roller 62 disposed on a lower side of the extending portion 34; and spur rollers 63 disposed on an upper side of the extending portion 34 and opposed to the output roller 62. Each of the output roller 62 and the spur rollers 63 is rotated, with the right and left direction 9 being as their axial direction. The spur rollers 63 are pressed onto the output roller 62 respectively by resilient members, not shown. The output roller 62 is rotatably supported by the pair of side frames 55 (see
The conveying roller 60 and the output roller 62 are rotated by a driving force generated by a motor 78 (see
Each of the guide rails 56, 57 illustrated in
A well-known belt mechanism, not shown, is disposed on an upper surface of the guide rail 57. The belt mechanism includes: pulleys respectively disposed on right and left end portions of the guide rail 57; and a belt looped over the pulleys. The belt is coupled to the carriage 40 and a carriage driving motor, not shown, for applying a driving force to the carriage 40. Upon driving of the carriage driving motor, the driving force is transmitted to the carriage 40 via the belt mechanism such that the carriage 40 is moved in the right and left direction 9. As a result, the carriage 40 is reciprocated in the right and left direction 9.
As illustrated in
The above-described bearings respectively have elongated holes 47 each extending in the front and rear direction 8. The shaft 90 is fitted in the elongated holes 47. This construction allows the outer guide member 18 to be pivoted in the direction indicated by the arrow 91 and to be moved in the front and rear direction 8.
The outer guide member 18 includes: a side wall 92 partly constituting a rear surface of the housing 14; and a guide portion 93 disposed in front of the side wall 92 and supported by the side wall 92. The guide portion 93 is shaped like a plate curved at a portion thereof near the curved portion 33.
The outer guide member 18 is pivoted between a first position illustrated in
As illustrated in
The roller holder 85 is supported by the guide rail 56 so as to be pivotable, with its front portion being as a distal end portion. This construction will be explained in detail. As illustrated in
It is noted that the construction in which the roller holder 85 is pivotably supported by the guide rail 56 is not limited to the above-described construction, and a well-known mechanism may be employed. For example, the MFP 10 may be configured such that a shaft extending in the right and left direction 9 is provided in a rear end portion of the roller holder 85, and the shaft is supported by the guide rail 56. Also, the roller holder 85 may be pivotably supported by a component (e.g., the side frames 55) different from the guide rail 56.
As illustrated in
The pinch rollers 61 supported by the roller holder 85 contact the conveying roller 60 from an upper side thereof. In the state in which the pinch rollers 61 and the conveying roller 60 are held in contact with each other, the shaft of the pinch rollers 61 is located in front of the shaft of the conveying roller 60. Consequently, the recording sheet nipped by the conveying roller pair 59 is conveyed obliquely downward in the front direction and pressed onto the platen 42. This construction can fix a distance between the recording head 38 and the recording sheet supported by the platen 42.
As illustrated in
Lower end portions of the respective coil springs 73 are held in contact with the roller holder 85, and upper end portions of the respective coil springs 73 are held in contact with the respective engagement members 74. Lower surfaces 66 of the respective engagement members 74 are respectively held in contact with the upper end portions of the respective coil springs 73. Each of the engagement members 74 has side portions 71 extending downward from the corresponding lower surface 66. The lower surface 66 and the side portions 71 of the engagement member 74 cover the coil spring 73.
Projections 75 are formed on upper surfaces of the respective engagement members 74. The guide rail 56 has openings 76 (each as one example of an engaging portion) at positions corresponding to the respective engagement members 74.
As illustrated in
The engagement members 74 are movable with respect to the roller holder 85 via the respective coil springs 73. Specifically, each of the engagement members 74 can be moved, by extension and compression of the corresponding coil spring 73, between an upper position illustrated in
In the present embodiment, the coil springs 73 are used for urging the respective projections 75 upward and urging the respective pinch rollers 61 toward the conveying roller 60. However, an urging member for urging the projections 75 upward and an urging member for urging the pinch rollers 61 toward the conveying roller 60 may be independent of each other.
As illustrated in
When the outer guide member 18 is located at the first position, an upper surface of the load adjusting member 80 is held in contact with the lower surface 98 (as one example of a second contact surface) of the guide rail 56, and a lower surface of the load adjusting member 80 is held in contact with the projection 75 provided on the engagement member 74. As a result, the load adjusting member 80 is interposed between the guide rail 56 and the urging member 72. The coil spring 73 is compressed by the load adjusting member 80 in this state, resulting in increase in an urging force of the urging member 72. In this state, the engagement member 74 is located at the lower position, and the urging force generated by the coil spring 73 is a first urging force.
A distal end portion of the load adjusting member 80 is provided with a projecting portion 81. The projecting portion 81 projects upward from the upper surface of the load adjusting member 80 in the state in which the outer guide member 18 is located at the first position. When the outer guide member 18 is located at the first position, the projecting portion 81 is inserted into the corresponding opening 76 of the guide rail 56. As a result, the load adjusting member 80 is engaged with the opening 76 when the outer guide member 18 is located at the first position. It is noted that the load adjusting member 80 may not have the projecting portion 81.
When the outer guide member 18 is moved in the front and rear direction 8, the load adjusting member 80 is moved in the front and rear direction 8 integrally with the outer guide member 18. When the outer guide member 18 is pivoted in the direction indicated by the arrow 91, the load adjusting member 80 is pivoted in the direction indicated by the arrow 91 integrally with the outer guide member 18. In other words, the load adjusting member 80 moves in the direction indicated by the arrow 91 and in the front and rear direction 8 intersecting the downward direction in which the urging member 72 urges the pinch roller 61, in conjunction with a change in the state of the outer guide member 18.
As illustrated in
There will be next explained the pivotal movement of the outer guide member 18. First, movement of the outer guide member 18 from the first position to the second position will be explained.
As illustrated in
When the outer guide member 18 is located at the first position, the engagement member 74 is located at the lower position. When the outer guide member 18 is located at the first position, each of the pinch rollers 61 is pressed on the conveying roller 60 by the first urging force of the urging member 72.
When the outer guide member 18 is located at the first position, the shaft 90 is located at a front end portion of each of the elongated holes 47. In this state, the movement of the load adjusting member 80 in the up and down direction 7 is limited by the guide rail 56 and the urging member 72. For this reason, the outer guide member 18 cannot be pivoted in the direction indicated by the arrow 91. Thus, the outer guide member 18 is moved rearward from the first position to a position illustrated in
When the outer guide member 18 is moved rearward, the projecting portion 81 is brought into contact with a rear side surface 17 of the opening 76 so as to press the rear side surface 17. As a result, the projecting portion 81 receives a force of reaction from the rear side surface 17. The force of the reaction bends the load adjusting member 80 downward. As a result, the projecting portion 81 comes out of the opening 76, which releases the engagement of the load adjusting member 80 and the opening 76.
When the outer guide member 18 is moved further rearward and reaches the position illustrated in
When the outer guide member 18 is located at the position illustrated in
When the outer guide member 18 is pivoted from the position illustrated in
There will be next explained operations when the outer guide member 18 is moved from the second position to the first position. First, the outer guide member 18 is pivoted, in the direction indicated by the arrow 91, from the second position toward the position illustrated in
The outer guide member 18 is then moved frontward from the position illustrated in
When the outer guide member 18 is moved further in the front direction, the projecting portion 81 is inserted into the opening 76. As a result, the outer guide member 18 is positioned at the first position.
In the present embodiment, when the outer guide member 18 is located at the first position, the curved portion 33 of the conveyance path 65 is defined or covered by the outer guide member 18, and the load adjusting member 80 increases the urging force of the urging member 72 when compared with the situation in which the urging member 72 does not contact the load adjusting member 80. When the outer guide member 18 is located at the second position, the curved portion 33 is exposed, and the load adjusting member 80 is spaced apart from the urging member 72, resulting in reduction in the urging force of the urging member 72.
In the present embodiment, the load adjusting member 80 is interposed between the guide rail 56 and the urging member 72. Thus, the load adjusting member 80 can be constructed easily.
In the present embodiment, the load adjusting member 80 is moved in the rear direction intersecting the down direction in which the urging member 72 urges the pinch roller 61 in conjunction with the movement of the outer guide member 18. Accordingly, a component or components other than the load adjusting member 80 such as the guide rail 56 can be disposed in a space located over the load adjusting member 80.
In the present embodiment, the load adjusting member 80 is engaged with the opening 76 formed in the guide rail 56. This construction stabilizes the position at which the load adjusting member 80 contacts the urging member 72.
In the above-described embodiment, the outer guide member 18 is moved in the front and rear direction 8 and pivoted in the direction indicated by the arrow 91 to move between the first position and the second position. However, the outer guide member 18 is not limited to this construction. For example, the outer guide member 18 may be mounted on and removed from the housing 14. In this case, a state in which the outer guide member 18 is mounted on the housing 14 is one example of the first state, and a state in which the outer guide member 18 is removed from the housing 14 is one example of the second state. In the above-described embodiment, when the outer guide member 18 is located at the second position, the load adjusting member 80 is spaced apart from the urging member 72, but the present invention is not limited to this construction. For example, the MFP 10 may be configured such that when the outer guide member 18 is located at the first position, the load adjusting member 80 is held in contact with the urging member 72, and the urging force generated by the urging member 72 is the first urging force and such that when the outer guide member 18 is located at the second position, the load adjusting member 80 is held in contact with the urging member 72, and the urging force generated by the urging member 72 is the second urging force that is smaller than the first urging force.
While the conveying roller pair 59 is constituted by the conveying roller 60 and the pinch rollers 61 which are located on an upper side of the conveying roller 60 in the above-described embodiment, the conveying roller 60 may be provided on an upper side of the pinch rollers 61. In this case, the engagement member 74 is configured to be engaged with a frame, not shown, provided in the housing 14 which is different from the guide rail 56.
While the printing unit 11 is one example of the conveying device in the above-described embodiment, the conveying device is not limited to the printing unit 11, and any device having the conveyance path may be employed as the conveying device. For example, a construction similar to that of the above-described conveying device may be applied to the scanning unit 12 having a conveyance path through which a document is conveyed. That is, the scanning unit 12 may be one example of the conveying device.
Number | Date | Country | Kind |
---|---|---|---|
2014-073836 | Mar 2014 | JP | national |