Conveying systems and methods of associating data with an item transported by a conveying system

Information

  • Patent Grant
  • 11873169
  • Patent Number
    11,873,169
  • Date Filed
    Monday, February 14, 2022
    2 years ago
  • Date Issued
    Tuesday, January 16, 2024
    4 months ago
Abstract
Systems and methods of associating data to an item being transported by a conveying system are disclosed. The item and data associated with the item are received at a first zone of the conveying system. The data is stored in a first computer-readable storage medium associated with the first zone. The item is transported to a second zone of the conveying system, and the data stored in the first computer-readable storage medium is transferred to a second computer-readable storage medium associated with the second zone.
Description
BACKGROUND

The present disclosure relates to conveying systems and methods, and in particular to conveying systems and methods of associating data with items being transported by a conveying system.


Conveying systems are used for a variety of purposes. Exemplary conveying systems include packaging systems, order fulfillment systems, manufacturing systems, shipping sortation systems, and returns processing systems. Some conveying systems use centralized multi-horsepower AC motors to drive shafts, belts or chains that, in turn, move banks of rollers to transport items throughout the conveying system. Other conveying systems include rollers with internal DC “micro-horsepower” motors that drive a localized segment of rollers. The latter systems include brushless DC roller conveying systems. A brushless DC roller conveying system includes several components and features, such as drive rollers with self-contained brushless DC motors, intelligent local controllers, and networking between the controllers based on bidirectional communication protocols.


Brushless DC roller conveying systems can be controlled by local controllers that control local functions in each of a plurality of zones of the conveying system and a centralized controller that tracks “items” (such as corrugated boxes, plastic totes, or pallets) as the items are transported through the conveying system. The centralized controllers tracks items by uniquely identifying the items at decision points in the conveyor system. These decision points include, for example, diverts, transfers, merges, order picking zones, weighing, sortation, and printing.


To uniquely identify the items, the conveyor systems often use bar codes that are printed on adhesive labels that are adhered to the items. Alternatively, a permanent bar code label on a reusable tote could be temporarily assigned to item(s) contained within the tote. The bar code associated with the permanent label is re-assigned when the items within the tote are changed.


As items are transported throughout the conveyor system, bar code scanners are positioned at decision points to read the bar codes. At each decision point, the bar code information is electronically sent to the centralized controller. The centralized controller determines operations to be performed for the item or data to be transmitted to the barcode scan location. This methodology is sub-optimal for a variety of reasons. For example, equipment capable of reading bar codes on moving items is expensive and can represent a large percentage of the cost of a conventional automated conveyor system. In addition, bar code scanners throughout the conveying system are in communication with the central control system, which may result in extensive and expensive data communication networks and associated cabling. Moreover, information required at decision points is stored in a central database. Timely access to that database can become challenging on large automated conveyor systems because the central controller must service all decision points simultaneously.


The bar codes used in conventional automated conveyor systems are one-dimensional bar codes that uniquely identify the item. However, one-dimensional bar codes do not contain any additional data about the item. Instead, data that determines the functions to be performed by the conveying system is stored remotely in a database associated with the centralized controller. This data can include routing information, order data, sort points, return points, or the like.


In a conventional conveying system, an item having an affixed one-dimensional bar code is transported by the conveying system. The conveying system includes a first zone and a second zone, where each zone includes a conveyor section that transports items, a bar code reader configured to scan bar codes affixed to the items, and a local controller. The conveying system further includes a centralized controller and a centralized database. The bar code reader scans the bar code for an item when the item enters the corresponding zone and transmits the bar code information to the local controller. The local controller retransmits the bar code information to the centralized controller for processing based on the operation for the particular zone. For example, if the first zone includes a scale, the centralized controller could send an expected weight for the item identified by the bar code information to the local controller for the first zone for comparison with the actual weight of the item. If the second zone includes a label printer, the centralized controller will send information to the local controller for the second zone to cause the label printer to print an appropriate label for the item.


One problem with such systems is that the one-dimensional bar code does not allow information to be passed from one zone to another. Moreover, the information in the one-dimensional bar code cannot be updated. In addition, as stated before, the centralized controller can become a bottleneck for information transfer throughout the conveying system. Finally, bar code readers are required at every zone in such conveying systems, which is a significant cost for the conveying system and can slow down operation of the system to allow items to be scanned.


A similar conveying system including items with RFID tags have been implemented. Such conveying systems allow information to be transferred from one zone to another (by writing information to the RFID tag). However, including RFID tags with every item can increase expenses significantly for large systems. Even in conveying systems in which RFID tags can be reused, RFID tags can only be written a predefined number of times before they fail to operate reliably. Moreover, such systems require RFID tag readers at every zone, which is a significant expense and can slow down operation of the system to allow tags to be scanned.


The use of two-dimensional bar codes has allowed additional data to be passed along with the item. For example, two-dimensional bar codes can include data about a predefined route of a specific item within the automated conveyor system. However, two-dimensional bar codes cannot be updated, thereby limiting the ability to update the data stored therein.


SUMMARY

In an embodiment, a method of associating data with an item being transported by a conveying system may include receiving an item at a first zone of a conveying system, receiving data associated with the item, storing the data in a first non-transitory computer-readable storage medium associated with the first zone, transporting the item to a second zone of the conveying system, and transferring the data stored in the first computer-readable storage medium to a second non-transitory computer-readable storage medium associated with the second zone.


In an embodiment, a method of associating data with an item being transported by a conveying system may include receiving an item from a first zone of a conveying system at a second zone of the conveying system, receiving, by a local controller of the second zone, data associated with the item from a local controller of the first zone of the conveying system, wherein the data comprises an expected value for a property of the item, comparing, by the local controller of the second zone, the expected value for the property with an actual value for the property, in response to the comparing satisfying a threshold condition: transporting the item to a third zone of the conveying system, and transferring the data to a local controller of the third zone by the local controller of the second zone, and, in response to the comparing not satisfying the threshold condition, transporting the item to a fourth zone of the conveying system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a block diagram of an illustrative conveying system according to an embodiment.



FIG. 2 depicts an illustrative method of associating data with an item being transported by the conveying system according to an embodiment.



FIG. 3 depicts an illustrative conveyor system according to an embodiment.



FIG. 4 depicts a block diagram of illustrative internal hardware that may be used to contain or implement program instructions according to an embodiment.





DETAILED DESCRIPTION

This disclosure is not limited to the particular systems, devices, and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.


As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”



FIG. 1 depicts a block diagram of an illustrative conveying system according to an embodiment. As shown in FIG. 1, the conveying system includes a first zone 10 and a second zone 20. Each zone 10, 20 may include a conveyor section 11, 21 configured to transports items, such as 1, a driver 12, 22 configured to drive the conveyor section 11, 21, a local controller 14, 24, and a non-transitory computer-readable storage medium 15, 25. In an embodiment, at least one zone, such as the first zone 10, may further include a data tag reader 13 (such as a bar code reader) configured to read data encoded in a data tag 2 (such as a bar code) associated with the item 1. In the embodiment depicted in FIG. 1, the first zone 10 further includes a scale 16, and the second zone 20 further includes a label printer 27. However, it will be apparent to those of ordinary skill in the art that additional physical operations and devices may be used in each of the first and second zones 10, 20. In an embodiment, the conveying system further includes a centralized controller 40 and a centralized database 41. In an alternate embodiment, the conveying system does not include a centralized controller or a centralized database. In such an embodiment, data may be stored in the computer-readable storage media 15, 25 associated with the respective zones.


As shown in FIG. 1, the first zone 10 includes a scale 16, and the second zone 20 includes a label printer 27. These functions of the first zone 10 and second zone 20 were selected to illustrate one potential implementation for a conveying system. Other embodiments are also considered within the scope of this disclosure. For example, any number of operations could benefit from allowing data to move through the conveying system with the item, such as at decision points in the conveying system, which may include diverts, transfers, merges, order picking zones, weighing, sortation, printing, and the like.



FIG. 2 depicts an illustrative method of associating data with an item being transported by the conveying system according to an embodiment. As shown in FIG. 2, an item having a data tag, such as, for example, a one-dimensional bar code, a two-dimensional bar code, an RFID tag, or the like, may be received 205 in a first zone. A data tag reader may read 210 (or scan) the data tag. The data tag reader may transmit 215 the data tag information to a local controller. In an embodiment, the local controller may access 220 a database to store the data tag information and identify an expected value for each of one or more properties for the item based on the data tag information. In an alternate embodiment, the local controller may retransmit 225 the data tag information to a centralized controller, which accesses 227 a central database to identify the expected values for the item.


A value for each of one or more actual properties of the item may be identified 230. For example, a scale may be used to identify 230 a weight of the item. In an alternate embodiment, physical dimensions of the item may be identified 230 using one or more sensors. Additional and/or alternate properties may be identified 230 within the scope of this disclosure. The local controller may compare 235 an actual value and an expected value for each property to determine whether the item satisfies a threshold condition.


If the item satisfies the threshold condition, the local controller for the first zone may submit 240 a request to a local controller for a second zone to determine whether the item may be transported to the second zone. The local controller for the second zone may respond 245 to the request when the item can be transported. The item may then be transported 250 to a second zone, and the data tag information and/or the one or more actual values for the properties may be transmitted 255 to a non-transitory computer-readable storage medium associated with the second zone.


If the item does not satisfy the threshold, the item may be transported 260 to a third zone for manual processing.


In an embodiment, the second zone (and subsequent zones, if any) need not rescan the data tag on the item because the information is stored locally and transferred to the corresponding zone as, before or after the item is being transported. As such, information relevant to the zone for an item having a particular data tag may be stored at the zone in a local non-transitory computer-readable storage medium. As such, the data tag may only be scanned in the first zone, thereby speeding up the transportation of the item through the conveying system. In particular, the disclosed method avoids the need for a data tag reader at each decision point in the conveying process, and eliminates the time needed for reading physical data tags, such as bar codes or RFID tags, in all but one zone. Moreover, in an embodiment, all processing may be performed locally, which resolves the potential for blocking at a centralized controller.


It will be understood that the above described method is one exemplary embodiment and that alternate methods may include variations from the above description as well as additional features, some of which are described below.


As described in reference to FIG. 2, the data tag is affixed to the item. However, the data tag could be affixed to a container holding the item or be integrated with the container holding the item, or otherwise associated with the item.


The conveying system may use rollers with internal DC “micro-horsepower” motors that drive a localized segment of rollers, including brushless DC roller conveying systems. The brushless DC roller conveying system may include drive rollers with self-contained brushless DC motors, intelligent local controllers and networking between the local controllers based on bidirectional communication protocols. These types of conveyor systems may segment long runs of conveyor into zones that hold a single item in a “Zone”. Each zone may have its own powered/motorized roller and can be started and stopped independently of the other zones on the system.


The local controller, in addition to driving the brushless motor, may also have the capability of communicating with external control components through digital I/O (Inputs and Outputs). These devices include but are not limited to photo eye sensors, limit switches, operator interfaces, solenoid valves, motor contactors, sensors, and the like. Each controller may include a microprocessor and may be in communication with a non-transitory computer-readable storage medium. The computer-readable storage medium may be of a sufficient size to store information pertaining to the item within the particular zone. The computer-readable storage medium may not exist as a physical device that travels with the item (as in conventional systems), but instead may act a virtual data tag that travels with the item. Because the data tag is virtual, no cost is associated with the data tag or the reader/writer devices that are conventionally required throughout conveying systems to read and write RFID tags. Also, since the data is transferred electronically, there are no speed issues relative to the transfer of the data.


The conveying system may include a motor driven roller conveyor line, which is basically a series of individual conveyors (zones) connected end to end to create longer lengths of conveyor. Each section of conveyor may contain its own drive roller which is coupled to the other rollers in that zone. Typically, as an item is conveyed on a conveyor line, each local controller communicates with the controller(s) adjacent to it to move an item from one zone to another. A storage medium may reside on a zone controller card of each local controller.


The following description describes, in more detail, an example in which a bar code is associated with an item to be transported in a conveying system that includes local computer-readable storage media. According to the example, the conveying system conveys an item in a container, weighs the item to determine whether the item is the correct weight (based on the bar code), and either diverts the box to a reject lane or prints a shipping label specific to that item.


According to the example, illustrated in FIG. 3, a box (the item) enters Zone 1. A bar code scanner reads a bar code on the item and identifies the item as Item 12345. The identifying information for Item 12345 is sent to a local database to access specific information about the item. The item information may include a customer address, an expected weight, expected dimensions, a desired shipping method (such as, United States Postal Service delivery, UPS® delivery, Fed-Ex® delivery, or the like), a quantity, a SKU, whether the item is fragile, whether the item requires additional packaging, and/or the like.


Once the scanner captures the information, Zone 1 queries Zone 2 to determine whether Zone 2 can accept the item (currently occupying Zone 1). If Zone 2 is clear, Zone 2 will activate its conveyor and notify Zone 1 that it is clear. Zone 1 then turns on its conveyor and transports the item towards Zone 2. As the item is being transported from Zone 1 to Zone 2, Zone 1 may send the entire data record for the item to Zone 2.


Once the item is located in Zone 2 and the data record associated with the item has been electronically transferred to the computer-readable storage medium for Zone 2, a scale in Zone 2 weighs the item. The actual weight is stored in the data record. Zone 2 queries Zone 3 to determine whether Zone 3 can accept the item. If Zone 3 is clear, Zone 3 will activate its conveyor and notify Zone 2 that it is clear. Zone 2 then turns on its conveyor and transports the item towards Zone 3. As the item is being transported from Zone 2 to Zone 3, Zone 2 may send the entire data record (including the recorded weight) for the item to Zone 3.


Once the item is located in Zone 3, the local controller for Zone 3 may compare the expected weight with the actual weight (as measured in Zone 2). If the local controller in Zone 3 determines that the actual weight is not the same as the expected weight, within a prescribed tolerance, Zone 3 will divert the item to Zone 6 (a reject conveyor). In this instance, Zone 3 queries Zone 6 to determine whether Zone 6 can accept the item. If Zone 6 is clear, Zone 6 will activate its conveyor and notify Zone 3 that it is clear. Zone 3 then turns on its conveyor and transports the item towards Zone 6.


In contrast, if the local controller in Zone 3 determines that the actual weight substantially matches the expected weight, Zone 3 will transport the item to Zone 4. In this instance, Zone 3 queries Zone 4 to determine whether Zone 4 can accept the item. If Zone 4 is clear, Zone 4 will activate its conveyor and notify Zone 3 that it is clear. Zone 3 then turns on its conveyor and transports the item towards Zone 4. As the item is being transported from Zone 3 to Zone 4, Zone 3 may send the entire data record for the item to Zone 4. Zone 4 may further transport the item to Zone 5 in a similar manner.


When the item arrives at Zone 5, a label printer may print a shipping label for the item. The data for the shipping label may be included in the data record now resident in the local non-transitory computer-readable storage medium in Zone 5. As such, the controller may retrieve the required information and cause the printer to print the label. The order may then be marked as shipped. The completed order information may be sent to an order tracking database separate from the conveying system.



FIG. 4 depicts a block diagram of illustrative internal hardware that may be used to contain or implement program instructions according to an embodiment. A bus 400 serves as the main information highway interconnecting the other illustrated components of the hardware. CPU 405 is the central processing unit of the system, performing calculations and logic operations required to execute a program. CPU 405, alone or in conjunction with one or more of the other elements disclosed in FIG. 4, is an exemplary processing device, computing device or processor as such terms are used within this disclosure. Read only memory (ROM) 410 and random access memory (RAM) 415 constitute exemplary memory devices.


A controller 420 interfaces with one or more optional memory devices 425 to the system bus 400. These memory devices 425 may include, for example, an external or internal DVD drive, a CD ROM drive, a hard drive, flash memory, a USB drive or the like. As indicated previously, these various drives and controllers are optional devices. Additionally, the memory devices 425 may be configured to include individual files for storing any software modules or instructions, auxiliary data, common files for storing groups of results or auxiliary, or one or more databases for storing the result information, auxiliary data, and related information as discussed above.


Program instructions, software or interactive modules for performing any of the functional steps associated with the steps, applications, or the like described above may be stored in the ROM 410 and/or the RAM 415. Optionally, the program instructions may be stored on a tangible computer-readable medium such as a compact disk, a digital disk, flash memory, a memory card, a USB drive, an optical disc storage medium, such as a Blu-ray™ disc, and/or other recording medium.


An optional display interface 430 may permit information from the bus 400 to be displayed on the display 435 in audio, visual, graphic or alphanumeric format. The information may include information related to a current job ticket and associated tasks. Communication with external devices may occur using various communication ports 440. An exemplary communication port 440 may be attached to a communications network, such as the Internet or a local area network.


The hardware may also include an interface 445 which allows for receipt of data from input devices such as a keyboard 450 or other input device 455 such as a mouse, a joystick, a touch screen, a remote control, a pointing device, a video input device and/or an audio input device.


In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.


The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to “at least one of A, B, or C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.


As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.


Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

Claims
  • 1. A method of associating data with an item being transported by a conveying system, the method comprising: receiving the item at a first zone of the conveying system, wherein the item comprises an associated data tag, wherein the first zone comprises a first local controller;receiving, by the first local controller, data associated with the item, wherein the data comprises an expected value for a property of the item;sensing a value for the property of the item;comparing, by the first local controller, the expected value for the property with the sensed value for the property;in response to the comparing satisfying a threshold condition: transporting the item to a second zone of the conveying system, wherein the second zone comprises a second local controller, andtransferring the data from the second local controller to the third local controller; andin response to the comparing not satisfying the threshold condition, transporting the item to a third zone of the conveying system.
  • 2. The method of claim 1, wherein the property comprises a weight of the item.
  • 3. The method of claim 1, wherein the property comprises one or more dimensions of the item.
  • 4. The method of claim 1, wherein the data further comprises the actual value for the property.
  • 5. A conveying system comprising: a first zone comprising: a first conveyor section configured to transport an item, anda first local controller;a second zone comprising: a second conveyor section configured to transport an item, anda second local controller;wherein the first zone is configured to receive the item, wherein the item comprises an associated data tag;wherein the first local controller is configured to: receive data associated with the item, wherein the data comprises an expected value for a property of the item,sense a value for the property of the item, andcompare the expected value for the property with the sensed value for the property, andin response to the comparison satisfying a threshold condition: transport the item to a second zone of the conveying system, wherein the second zone comprises a second local controller, andtransfer the data from the first local controller to the second local controller; andin response to the comparison not satisfying the threshold condition, transport the item to a third zone of the conveying system.
  • 6. The system of claim 5, wherein the property comprises a weight of the item.
  • 7. The system of claim 5, wherein the property comprises one or more dimensions of the item.
  • 8. The system of claim 5, wherein the data further comprises the actual value for the property.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/863,501 filed on Apr. 30, 2020, which is a continuation of U.S. patent application Ser. No. 15/953,541 filed Apr. 16, 2018, now U.S. Pat. No. 10,654,657, which is which is a continuation of U.S. patent application Ser. No. 15/267,947 filed Sep. 16, 2016, now U.S. Pat. No. 9,944,470, which is a continuation of U.S. patent application Ser. No. 14/451,175 filed on Aug. 4, 2014, now U.S. Pat. No. 9,446,908, which claims the benefit of U.S. Provisional Application No. 61/863,409 filed on Aug. 7, 2013. U.S. patent application Ser. No. 14/451,175 is also a continuation application of International Application No. PCT/US2013/024349 filed on Feb. 1, 2013, which claims the benefit of U.S. Provisional Application No. 61/595,098 filed Feb. 5, 2012. The contents of each of these applications are incorporated by reference in their entirety as if fully set forth herein.

US Referenced Citations (99)
Number Name Date Kind
4002886 Sundelin Jan 1977 A
4331328 Fasig May 1982 A
4424082 Rowan Jan 1984 A
4491982 Candy et al. Jan 1985 A
4500880 Gomersall et al. Feb 1985 A
4598275 Ross et al. Jul 1986 A
4792273 Specht Dec 1988 A
4854439 Ueda Aug 1989 A
4936738 Brennan et al. Jun 1990 A
4962466 Revesz et al. Oct 1990 A
5151684 Johnsen Sep 1992 A
5228558 Hall Jul 1993 A
5260694 Remahl Nov 1993 A
5271703 Lindqvist et al. Dec 1993 A
5294004 Leverett Mar 1994 A
5315094 Lisy May 1994 A
5348485 Briechle et al. Sep 1994 A
5505473 Radcliffe Apr 1996 A
5676514 Higman et al. Oct 1997 A
5730274 Loomer Mar 1998 A
5781443 Street et al. Jul 1998 A
5812986 Danelski Sep 1998 A
5842555 Gannon et al. Dec 1998 A
5862907 Taylor Jan 1999 A
5886634 Muhme Mar 1999 A
5990437 Coutant et al. Nov 1999 A
6021888 Itoh et al. Feb 2000 A
6023034 Nakajima et al. Feb 2000 A
6047812 Horn et al. Apr 2000 A
6205396 Teicher et al. Mar 2001 B1
6246023 Kugle Jun 2001 B1
6289260 Bradley et al. Sep 2001 B1
6315104 Ebert Nov 2001 B1
6331437 Cohen et al. Dec 2001 B1
6377867 Bradley et al. Apr 2002 B1
6481261 Ellis Nov 2002 B1
6505093 Thatcher et al. Jan 2003 B1
6543693 Stern et al. Apr 2003 B1
6544068 Hatton Apr 2003 B1
6597969 Greenwald et al. Jul 2003 B2
6650225 Bastian, II et al. Nov 2003 B2
6711461 Flores Mar 2004 B2
6729463 Pfeiffer May 2004 B2
6731094 Itoh et al. May 2004 B1
6762382 Danelski Jul 2004 B1
6762681 Danelski Jul 2004 B1
6775588 Peck Aug 2004 B1
6820736 Itoh et al. Nov 2004 B2
6827202 Topmiller et al. Dec 2004 B2
6873881 Schneible, Sr. Mar 2005 B1
6879306 Spoonower et al. Apr 2005 B2
6971833 Freudelsperger et al. Dec 2005 B1
7084738 Bastian, II Aug 2006 B2
7263409 LeVasseur et al. Aug 2007 B2
7542823 Nagai Jun 2009 B2
7591365 Knepple et al. Sep 2009 B2
7591366 Taylor Sep 2009 B2
7631869 Bowers et al. Dec 2009 B2
7705742 Delaney, III et al. Apr 2010 B1
7756603 Delaney, III et al. Jul 2010 B1
7905345 Taylor Mar 2011 B2
7909155 Lupton et al. Mar 2011 B2
8073562 Danelski Dec 2011 B2
8284993 Taylor Oct 2012 B2
8746437 Schiesser et al. Jun 2014 B2
8757363 Combs et al. Jun 2014 B2
9555977 Combs et al. Jan 2017 B2
10160607 Danelski et al. Dec 2018 B2
11247845 Danelski Feb 2022 B2
20020174038 Chien Nov 2002 A1
20040010337 Mountz Jan 2004 A1
20040148762 Eschenweck Aug 2004 A1
20050035694 Stevens Feb 2005 A1
20050043850 Stevens et al. Feb 2005 A1
20050047895 Lert, Jr. Mar 2005 A1
20050071234 Schon Mar 2005 A1
20050140498 Bastian, II Jun 2005 A1
20050149226 Stevens et al. Jul 2005 A1
20060238307 Bauer et al. Oct 2006 A1
20060289274 Knepple Dec 2006 A1
20070210923 Butler et al. Sep 2007 A1
20080183326 Danelski Jul 2008 A1
20080183328 Danelski Jul 2008 A1
20080234853 Antonuk Sep 2008 A1
20080270327 Freudelsperger Oct 2008 A1
20090074545 Lert, Jr. et al. Mar 2009 A1
20090173780 Ramamoorthy et al. Jul 2009 A1
20090301839 Taylor Dec 2009 A1
20100015925 Gruber Jan 2010 A1
20100223781 Sumi Sep 2010 A1
20100322473 Taylor Dec 2010 A1
20120022684 Hernot Jan 2012 A1
20120024669 Danelski et al. Feb 2012 A1
20120150342 Song Jun 2012 A1
20120160637 Itoh Jun 2012 A1
20120290126 Combs Nov 2012 A1
20140343720 Danelski Nov 2014 A1
20140351101 Danelski Nov 2014 A1
20170066598 Danelski Mar 2017 A1
Foreign Referenced Citations (31)
Number Date Country
1395199 Feb 2003 CN
1396543 Feb 2003 CN
1817757 Aug 2006 CN
101968860 Feb 2011 CN
4000603 Jul 1991 DE
19947259 Sep 2000 DE
102006051777 May 2008 DE
2810220 Dec 2014 EP
2810225 Dec 2014 EP
2881663 Aug 2006 FR
H02(1990)-285403 Nov 1990 JP
H03(1991)-221359 Sep 1991 JP
H05(1993)-116722 May 1993 JP
H11(1999)-199030 Jul 1999 JP
2000034004 Feb 2000 JP
2001171841 Jun 2001 JP
2002219420 Aug 2002 JP
2003065833 Mar 2003 JP
2005216957 Aug 2005 JP
2006160388 Jun 2006 JP
2009263018 Nov 2009 JP
2009298522 Dec 2009 JP
2015506325 Mar 2015 JP
2016533579 Oct 2016 JP
10-2004-0036899 May 2004 KR
10-2006-0020301 Mar 2006 KR
2003007256 Jan 2003 WO
2012024278 Feb 2012 WO
2013116620 Aug 2013 WO
2013116652 Aug 2013 WO
2015020976 Feb 2015 WO
Non-Patent Literature Citations (10)
Entry
Cheney “No Gags in Spencer's Distribution” Jun. 1994, American Shipper 36(6):56-69.
Hitchcock “Paperless Picking Increases Productivity by Over 300%” Jul. 1993, Modern Materials Handling 48(8):20(30).
International Search Report and Written Opinion for PCT/US14/49638 dated Mar. 12, 2015.
International Search Report for PCT/US2013/024308 dated May 15, 2013.
International Search Report for PCT/US2013/024349 dated May 15, 2013.
Supplemental European Search Report for EP 13743539 dated Aug. 5, 2015.
Supplemental European Search Report for EP 13744016 dated Aug. 5, 2015.
Supplemental European Search Report and Written Opinion for EP 14758722 dated Dec. 22, 2016.
Supplemental European Search Report and Written Opinion for EP 14759363 dated Aug. 17, 2017.
Wei et al. “Solving the Fixed Shelf Order-Picking Optimization Problem Using the Modified LK Algorithm” Jun. 2004 Computer Applications 24(6):1.
Related Publications (1)
Number Date Country
20220162014 A1 May 2022 US
Provisional Applications (2)
Number Date Country
61863409 Aug 2013 US
61595098 Feb 2012 US
Continuations (5)
Number Date Country
Parent 16863501 Apr 2020 US
Child 17671375 US
Parent 15953541 Apr 2018 US
Child 16863501 US
Parent 15267947 Sep 2016 US
Child 15953541 US
Parent 14451175 Aug 2014 US
Child 15267947 US
Parent PCT/US2013/024349 Feb 2013 US
Child 14451175 US