1. Field of the Invention
This invention relates to endless belts for conveyors and, more particularly, to thermoplastic endless belts driven by sprockets.
2. Description of the Related Art
Low tension, direct drive conveyor belts are typically used in situations where hygiene and cleanliness are critically important. For example, in food processing plants such as those that process meat products for human consumption, low tension, direct drive belt conveyors are used to transport items. Sanitation is critically important and, therefore, the endless belts used in such conveyors are conventionally made of materials that can be hygienically cleaned, such as thermoplastics or stainless steel.
Known belts are typically formed of interlocking links having teeth that are adapted to engage drive sprockets. One of the problems with such belts is that food particles can become lodged in the joints of the interconnecting links. Consequently, cleaning the belts can be difficult and may require removing the belt from the conveyor system for special cleaning operations.
One solution to this problem is the use of flexible thermoplastic belts without interlocking links such as that disclosed in U.S. Pat. No. 5,697,491. Such belts having a smooth continuous surface (sometimes called “homogeneous belts”) are driven by V-guides wherein a radial groove in a drive pulley engages a longitudinal rib on the underside of the belt. One of the problems with such belts is that grease and oil from the food items can migrate to the groove or to the rib, which causes a loss of friction between the pulley and the belt. Consequently the driving force becomes unstable and unreliable. Moreover, such belts are under tension to ensure that the pulley imparts enough driving force. This tensioning raises other issues beyond slippage due to oils and contaminants. A thermoplastic belt under tension will stretch, which may require adjustment of the tension from time to time. In addition, there are additional costs associated with ensuring that the conveyor frame be sufficiently strong enough to handle the normal stresses of the pretensioned belt plus additional stresses caused by loading the belt.
It is known to provide a drive sprocket or drum with transverse grooves that are complementary in shape to teeth on a flexible conveyor belt, as shown for example in U.S. Pat. No. 4,170,281. However, the belt is formed from interlocking links and the belt is still under tension. The problems associated with interlocking links and pretensioning remain.
Another solution is disclosed in U.S. Pat. No. 5,911,307 where a timing belt is added to a homogeneous belt to engage a drive sprocket. As a result, reliance upon friction for motion is minimized, and the belt need not be under tension. There are some remaining problems, however. Assembling a timing belt to a homogeneous belt is costly and the bonding or adhering process is critical. Failure of the bond increases the risk of contamination and total belt failure.
The invention solves these and other problems by providing a stretchable endless belt having an inner surface and a plurality of teeth extending therefrom at a given belt pitch. The teeth are adapted to engage a sprocket having sheaves spaced from each other at a given sprocket pitch. According to the invention, the belt pitch is less than the sprocket pitch so that the sprocket can drive the endless belt when only one tooth engages a sheave, and continue to drive the endless belt as it stretches under load by multiple teeth engaging multiple sheaves. Preferably, the endless belt is stretchable within a range of 0-3% of its total length and the maximum width of a tooth is less than the maximum width of a sheave.
Typically, each sheave is 11-15 percent wider than a corresponding tooth. Preferably, the belt is formed of a thermoplastic material and the teeth are formed integrally with the belt. Also, the teeth can be formed of urethane while the rest of the belt can be formed of copolyester. The outer surface will preferably be substantially free of discontinuities.
In another aspect of the invention, a conveyor comprises an endless belt having inwardly facing teeth spaced at a belt pitch and a drive sprocket having sheaves circumferentially spaced about its perimeter at a sprocket pitch. The belt pitch is less than the sprocket pitch, the width of the teeth is slightly less than the width of the sheaves, and the belt is slightly stretchable. Thus, when the belt is under load, the teeth will continue to engage the sheaves enabling the belt to be driven by the sprocket. Preferably, the belt is stretchable within a range of 0-3% under loads of 0-18 Kg per cm of width. Also, the drive sprocket may typically have ten sheaves.
In yet a further aspect of the invention, a method of making a belt with integrally formed teeth includes the steps of extruding a flat ribbon of thermoplastic material; providing a profile drum with a plurality of grooves in its outer surface; compressing the flat ribbon against the profile drum while the flat ribbon is still soft and malleable so that thermoplastic material flows into the grooves; withdrawing the flat ribbon with formed teeth from the profile drum; and cooling the flat ribbon with the formed teeth.
Another method of forming a belt with integral teeth comprises the steps of providing a flat ribbon of thermoplastic material; molding teeth onto one surface of the flat ribbon; and curing the flat ribbon with the teeth. In this case, the molding step can comprise injection molding or friction molding.
In the drawings:
An endless belt 100 according to the invention is seen in
The belt 100 has an outside surface 110 that is fairly smooth and free of discontinuities. Preferably, the belt 100 is made of a thermoplastic material such as Pebax® resin, polyester or polyurethane. The outside surface 110 on the upper span 105 is the carrying surface for transport of items. Because it is smooth and free of discontinuities, there is no place for particles or contaminants to lodge. Moreover, the belt 100 can be cleaned in situ, without the need to remove it from the installation.
Greater detail about the structure of the belt 100 is shown in
Similarly, the sprocket pitch 116 is the arc length between the centerlines of adjacent sheaves 104, measured along the sprocket's pitch circle 118. The sprocket pitch circle 118 in this case corresponds to the belt pitch line 114 as the belt 100 moves around the sprocket 102. In other words, the sprocket pitch circle 118 will have the same radius as the belt pitch line 114 as the belt goes around the sprocket. For a thermoplastic belt, the area of greatest stress on the belt 100 occurs at zone 120, and the area of least stress occurs at zone 122 just as the belt is released from the drive sprocket 102.
Looking now also at
The belt pitch 112 when the belt 100 is at rest is less than the sprocket pitch 116. Thus, as illustrated in
Looking now at
Preferably, the teeth 106, 156 will be integral with the belt 100, 150. A method of making an endless belt according to the invention is shown in
Another method of manufacturing the belt is to start with a homogeneous belt of approximately 7 to 8 mm in thickness, and machine away material between adjacent teeth 106, 156 to a depth of about 3 to 4 mm. This method necessarily generates scrap.
Another method of manufacturing the belt is to start with a homogeneous belt approximately 3-4 mm in thickness, and injection mold teeth at an appropriate belt pitch onto one surface of the belt. In this method, the teeth can be different material. For example, the belt can be formed of polyester such as COPE, with the teeth being formed of a urethane.
Another method of manufacturing the belt is to start with a homogeneous belt approximately 3-4 mm in thickness, and friction mold teeth at an appropriate belt pitch onto one surface of the belt. In this method, the teeth can be different material. For example, the belt can be formed of polyester such as COPE, with the teeth being formed of a urethane. It has been found that applying a 160 Hz orbital motion of a polyester tooth on a polyester belt for three seconds creates enough softening for the tooth to bond to the belt.
It will be understood that certain variations and modifications can be made without departing from the scope of the invention. For example, the length of each tooth need not extend to the edge of the belt as illustrated. A narrow rank of teeth may be sufficient. Further, a narrow belt having a rank of teeth can be preformed and adhered or bonded to an inner surface of a larger belt. Moreover, if desired, coloring pigments and/or antibacterial agents can be added to the thermoplastic prior to extrusion.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
Number | Date | Country | Kind |
---|---|---|---|
60319133 | Mar 2002 | US | national |
This application claims the benefit of U.S. Application No. 60/319,133 filed Mar. 5, 2002.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US03/03029 | 2/3/2003 | WO |