The disclosure relates to a conveyor device for at least conveying a fluid and to a pump with such a conveyor device.
A conveyor device for at least conveying a fluid is already known from DE 10 2017 104 400 A1, wherein the already known conveyor device comprises at least one conveyor chamber, at least one dimensionally stable conveyor chamber element that at least partially delimits the conveyor chamber and at least one elastically deformable, particularly annular, conveyor element that delimits the conveyor chamber together with the conveyor chamber element and is arranged on the conveyor chamber element. DE 10 2017 104 400 A1 also discloses a pump with such a conveyor device.
Furthermore, a pump for at least conveying a fluid is already known from DE 10 2012 023 900 A1, wherein the pump comprises at least one conveyor device that is designed in the form of an elastically deformable pump hose and has at least one conveyor chamber, an elastically deformable conveyor chamber element and at least one elastically deformable conveyor element, which delimits the conveyor chamber together with the conveyor chamber element and is arranged integrally with the conveyor chamber element, and wherein the conveyor chamber element is made of a firmer material than the conveyor element, but in principle is still elastic.
In addition, conveyor devices for at least conveying a fluid are already known from U.S. Pat. Nos. 5,006,049 and 3,922,119, wherein these conveyor devices comprise at least one conveyor chamber, at least one dimensionally stable conveyor chamber element that at least partially delimits the conveyor chamber and at least one elastically deformable conveyor element that delimits the conveyor chamber together with the conveyor chamber element and is arranged on the conveyor chamber element, and wherein the conveyor chamber element comprises at least one connecting piece for a fluid supply line adapter and/or at least one connecting piece for a fluid discharge line adapter, which is/are arranged on a side of the conveyor chamber element facing away from the conveyor element.
The disclosure particularly is based on the objective of making available a conveyor device and/or a pump of the initially described type, which has/have improved properties with respect to an advantageous service function and/or an advantageous conveying function. According to the disclosure, this objective is attained with the characteristics of claim 1 whereas advantageous embodiments and enhancements of the disclosure can be gathered from the dependent claims.
The disclosure is based on a conveyor device for at least conveying a fluid with at least one conveyor chamber, with at least one dimensionally stable conveyor chamber element that particularly is formed separately from a housing and at least partially delimits the conveyor chamber and with at least one elastically deformable conveyor element, particularly a conveyor membrane, that delimits the conveyor chamber together with the conveyor chamber element and is arranged on the conveyor chamber element, wherein the conveyor chamber element comprises at least one connecting piece for a fluid supply line adapter, which particularly is designed to differ from a hose, and/or at least one additional connecting piece for a fluid discharge line adapter, which particularly is designed to differ from a hose, and wherein said connecting piece/connecting pieces is/are arranged on a side, particularly on an outer side, of the conveyor chamber element facing away from the conveyor element.
It is proposed that the conveyor device comprises at least one movement compensation unit that is at least designed for at least partially compensating and/or damping relative movements between the fluid supply line adapter and the connecting piece when the connecting piece is connected to the fluid supply line adapter and/or for at least partially compensating and/or damping relative movements between the fluid discharge line adapter and, in particular, the additional connecting piece when the additional connecting piece is connected to the fluid discharge line adapter. The movement compensation unit preferably comprises at least one damping element that is arranged between the connecting piece and the fluid supply line adapter and at least one additional damping element that is arranged between the additional connecting piece and the fluid discharge line adapter. The damping element and/or, in particular, the additional damping element preferably is/are made of an elastomer. The damping element and/or, in particular, the additional damping element preferably is/are designed in the form of an O-ring. However, it is also conceivable that the movement compensation unit has a different design deemed sensible by a person skilled in the art. The fluid supply line adapter and/or the fluid discharge line adapter preferably are designed in a tubular manner. The fluid supply line adapter and/or the fluid discharge line adapter particularly have a dimensionally stable hollow-cylindrical shape. However, it is also conceivable that the fluid supply line adapter and/or the fluid discharge line adapter have a different design deemed sensible by a person skilled in the art. The connecting piece and/or, in particular, the additional connecting piece preferably is/are intended for producing a form-fitting and/or frictional connection with the fluid supply line adapter and/or the fluid discharge line adapter. In this context, the term “intended” particularly means specially constructed, specially designed and/or specially equipped. The phrase an element and/or a unit is/are intended for a certain function particularly means that the element and/or the unit fulfills/fulfill and/or carries out/carry out this certain function in at least an application state and/or operational state. The connecting piece and/or, in particular, the additional connecting piece may have at least one fixing element for fixing the fluid supply line adapter and/or the fluid discharge line adapter on the connecting piece and/or, in particular, the additional connecting piece. The fixing element may be designed in the form of a thread, a bayonet coupling, an engagement hook or an engagement recess or in the form of a different fixing element deemed sensible by a person skilled in the art. The connecting piece and/or, in particular, the additional connecting piece preferably are intended for producing a frictional connection with the fluid supply line adapter and/or the fluid discharge line adapter. The fluid supply line adapter and/or the fluid discharge line adapter particularly can be inserted into the connecting piece and/or, in particular, the additional connecting piece. The connecting piece and/or, in particular, the additional connecting piece preferably are arranged on an outer side of the conveyor chamber element.
The conveyor chamber element preferably is designed in an annular manner. The conveyor chamber element preferably has a slotted annular design. Viewed in a plane, particularly in a plane extending at least essentially perpendicular to a drive axis of the drive shaft, the conveyor chamber element particularly has a cross-sectional shape that essentially is composed of a circular arc or an open ring, which extends along an angular range of less than 360° and, in particular, more than 90°, and two transverse extensions, which extend transverse to the circular arc or to the open ring and directly border on the circular arc or the open ring, particularly in end regions of the circular arc or the open ring. The conveyor chamber element preferably is at least mostly, in particular completely, made of a plastic, particularly an injection-moulded plastic. However, it is also conceivable that the conveyor chamber element is made of a different material deemed sensible by a person skilled in the art, e.g. of a biodegradable material, a metal or the like, and/or that the conveyor chamber element is manufactured by means of a different manufacturing process deemed sensible by a person skilled in the art, e.g. by means of a 3D printing process, a cutting process, a milling process, a diecasting process or the like.
The conveyor element preferably is at least mostly, in particular completely, made of a rubber, particularly a synthetic rubber. For example, the conveyor element may be made of an ethylene-propylene-diene-(monomer) rubber (EPDM), a fluorocarbon rubber or fluororubber (FC), an acrylonitrile-butadiene rubber (NBR) or the like. Other materials deemed sensible by a person skilled in the art are likewise conceivable.
The conveyor element preferably has a base body. The base body particularly has an annular design. A conveying side of the base body preferably is arranged on a side of the base body facing away from an activation side of the base body. The conveying side particularly forms an outer side of the base body. The activation side preferably forms an inner side of the base body. At least one activation extension of the conveyor element preferably is arranged on the activation side. The activation extension preferably is intended for interacting with a transmission element of a drive unit of a pump comprising the conveyor device, particularly with at least two transmission elements of the drive unit. The transmission element/s preferably is/are arranged on a driving element of the drive unit of the pump comprising the conveyor device. The base body preferably has a slotted annular design. Viewed in a plane, particularly in a plane extending at least essentially perpendicular to a drive axis of the drive shaft, the base body particularly has a cross-sectional shape that essentially is composed of a circular arc or an open ring, which extends along an angular range of less than 360° and, in particular, more than 90°, and two inlet and/or outlet extensions, which extend transverse to the circular arc or to the open ring and directly border on the circular arc or the open ring, particularly in end regions of the circular arc or the open ring. The activation extension preferably is arranged on the base body, particularly on an inner side of the base body, in the region of a circular arc extent or ring extent of the base body. A maximum longitudinal extent of the activation extension particularly is at least 5% smaller, preferably 10% and especially at least 20% smaller, than a maximum longitudinal extent of the base body. The activation extension preferably extends at least essentially along an overall extent of the circular arc or the open ring of the base body, particularly up to end regions of the circular arc or the open ring, on which an inlet and/or outlet extension of the base body is respectively arranged. The activation extension particularly extends on the activation side along an angular range of less than 360°, preferably less than 350° and especially more than 180°.
The conveyor element, particularly the conveyor membrane, advantageously can be moved away from a counter surface of the conveyor chamber element, particularly lifted off the counter surface, as a result of the effect of a driving force that acts in a direction facing away from the activation side, particularly in order to generate a vacuum in the conveyor chamber. A vacuum that particularly is lower than −0.1 bar, preferably lower than −0.2 bar and especially lower than −0.3 bar, particularly referred to an atmospheric pressure surrounding the conveyor device, preferably can be generated as a result of a movement of the conveyor element, particularly the conveyor membrane, away from the counter surface. This makes it possible to achieve an advantageous conveyance of a medium to be conveyed into the conveyor chamber of the conveyor device, which is at least partially delimited by the counter surface and the conveying surface.
The conveyor element, particularly the conveyor membrane, preferably can be driven by means of the drive unit in such a way that a conveyance of a medium to be conveyed, particularly a fluid, can be realized in accordance with a traveling wave principle (see, e.g., the disclosure of EP 1 317 626 B1). The drive unit may be designed in the form of a mechanical drive unit, a magnetic drive unit, a piezoelectric drive unit, a hydraulic drive unit, a pneumatic drive unit, an electric drive unit, a magnetorheologic drive unit, a carbontubes drive unit, a combination of the aforementioned types of drive units or in the form of a different drive unit deemed sensible by a person skilled in the art. The drive unit preferably has at least the driving element that is intended for acting upon the conveyor element, particularly the conveyor membrane. However, it is also conceivable that the drive unit has more than one driving element intended for acting upon the conveyor element. The driving element preferably is intended for causing an elastic deformation of the conveyor element, particularly the conveyor membrane, as a result of an effect of a driving force on the conveyor element, particularly the conveyor membrane. The driving element may have any design deemed sensible by a person skilled in the art, e.g. in the form of a plunger, an extension, an engagement ring, a hook, a gripping element or the like. The driving element preferably is designed in the form of an eccentric shaft. The eccentric shaft preferably can be driven in a rotating manner by means of a motor unit of a pump comprising the conveyor device in a manner familiar to a person skilled in the art. The motor unit may be designed in the form of an electric motor unit, an internal combustion engine unit, a hybrid motor unit or the like. The driving element preferably has a rotational axis. The rotational axis preferably extends transverse, particularly at least essentially perpendicular, to a principal conveying direction of the conveyor chamber, along which a fluid can be conveyed through the conveyor chamber.
The conveyor chamber of the conveyor device preferably is delimited by the base body of the conveyor element and the conveyor chamber element. The conveyor chamber of the conveyor device preferably is delimited by the conveying surface and the counter surface lying opposite of the conveying surface. The conveyor chamber element preferably is designed in a dimensionally stable manner. The conveyor chamber element preferably has a prestress, particularly for exerting a force upon the conveyor element in the direction of the drive unit and/or a pressing unit of the conveyor device. The conveyor element, particularly the conveyor membrane, preferably is designed in an elastically resilient manner. The term “elastically resilient” particularly refers to a property of an element, particularly the conveyor element, which particularly is intended for generating a counterforce that is dependent on a change of a shape of the element, preferably proportional to the change, and counteracts the change. The conveyor element, particularly the conveyor membrane, preferably can be deformed repeatedly, particularly without thereby mechanically damaging or destroying the conveyor element, particularly the conveyor membrane. The conveyor element, particularly the conveyor membrane, preferably seeks to automatically reassume, particularly after a deformation, a basic shape, especially a convexly curved basic shape referred to the counter surface, particularly a zero position of the conveyor element, particularly the conveyor membrane. The elastically resilient design of the conveyor element, particularly the conveyor membrane, preferably can be at least partially influenced and/or caused by means of a particularly geometric design of the base body and/or by means of an arrangement of the conveyor element, particularly the conveyor membrane, on the conveyor chamber element having the counter surface. The conveyor element, particularly the conveyor membrane, preferably is arranged on the conveyor chamber element having the counter surface in such a way a conveyance of a fluid takes place in and/or through the conveyor chamber as a result of an indentation of the conveyor element, particularly the conveyor membrane. After an effect of a driving force on the conveyor element, particularly the conveyor membrane, ceases in order to convey a fluid, the conveying surface of the conveyor element, particularly the conveyor membrane, preferably seeks to reassume a convexly curved arrangement referred to the counter surface in an at least essentially automatic manner, particularly as a result of the elastically resilient design. The conveyor element, particularly the conveyor membrane, preferably is made of a rubber-like and/or caoutchouc-like material. However, it is also conceivable that the conveyor device, particularly the conveyor membrane, consists of a different material deemed sensible by a person skilled in the art or of a combination of multiple materials, which allow/allows an elastically resilient design of the conveyor element, particularly the conveyor membrane.
The conveyor element, particularly the conveyor membrane, preferably utilizes an “indentation effect” in order to convey a fluid in and/or through the conveyor chamber. The conveyor element, particularly the conveying surface, preferably can be at least temporarily indented in order to convey a fluid, wherein at least one indentation can be displaced, particularly in a rolling manner, along the conveying surface in order to convey a fluid.
The inventive design advantageously makes it possible to achieve a long service life. Inadvertent relative movements can be advantageously counteracted. A sealing function during relative movements can be advantageously maintained. An efficient conveyance of a fluid can be advantageously realized. A very easy serviceability can be advantageously achieved. An adaptability to different connectivity options can be advantageously realized. A comfortable connection to differently designed fluid lines can be advantageously realized. A broad application spectrum for the efficient conveyance of a fluid can be advantageously realized.
It is furthermore proposed that the conveyor device comprises at least one functional unit, particularly a filter unit and/or a valve unit, as well as the fluid supply line adapter and/or the fluid discharge line adapter, wherein the functional unit is at least partially arranged in the fluid supply line adapter and/or in the fluid discharge line adapter. The functional unit preferably is designed in the form of a filter cartridge and/or in the form of a valve cartridge that is integrated into the fluid supply line adapter and/or the fluid discharge line adapter. The functional unit particularly is arranged in the fluid supply line adapter and/or the fluid discharge line adapter in an exchangeable manner. However, it is also conceivable that the functional unit is permanently integrated into the fluid supply line adapter and/or the fluid discharge line adapter, wherein the fluid supply line adapter and/or the fluid discharge line adapter is designed in an exchangeable manner in order to exchange the functional unit. The inventive design makes it possible to integrate an additional function into the conveyor device in a constructively simple manner. An efficient conveyance of a fluid can be advantageously realized.
It is furthermore proposed that the connecting piece and/or, in particular, the additional connecting piece respectively is/are arranged on at least one transverse extension of the conveyor chamber element. The connecting piece and/or, in particular, the additional connecting piece preferably are respectively arranged on at least one transverse extension of the conveyor chamber element, particularly designed integrally with the corresponding transverse extension. The term “integrally” particularly refers to an at least firmly bonded connection, which is produced, e.g., by means of a welding process, a bonding process, an injection overmoulding process and/or a different process deemed sensible by a person skilled in the art, and/or to an advantageous manufacture in one piece, e.g. from a casting and/or in a single-component or multi-component injection moulding process and advantageously from a single blank. The inventive design advantageously makes it possible to realize a constructively simple connection interface that can be sealed in a constructively simple manner. An additional function can be integrated into the conveyor device in a constructively simple manner. An efficient conveyance of a fluid can be advantageously realized.
It is furthermore proposed that the connecting piece and/or, in particular, the additional connecting piece respectively has/have a principal axis that extends transverse, particularly at least essentially perpendicular, to a principal plane of the at least one transverse extension. The connecting piece and/or, in particular, the additional connecting piece respectively has/have a principal axis that extends transverse, particularly at least essentially perpendicular, to a principal plane of the at least one transverse extension, particularly the respective transverse extension. The principal axis/axes of the connecting piece and/or, in particular, the additional connecting piece preferably extends/extend transverse, particularly at least essentially perpendicular, to the principal conveying direction of the conveyor chamber. The principal axis/axes of the connecting piece and/or, in particular, the additional connecting piece preferably extends/extend at least essentially parallel to the plane extending at least essentially perpendicular to the drive axis of the drive unit. The connecting piece and, in particular, the additional connecting piece preferably are arranged on the side, particularly on the outer side, of the conveyor chamber element facing away from the conveyor element such that they are aligned differently, particularly in an opposed manner. The connecting piece and, in particular, the additional connecting piece preferably extend in different directions, particularly in opposite directions, starting from the outer side of the conveyor chamber element. The inventive design makes it possible to lead the fluid supply line adapter and/or the fluid discharge line adapter out of a housing of the pump, in which the conveyor device is arranged, in a constructively simple manner. A constructively simple connection interface, which can be sealed in a constructively simple manner, can be advantageously realized. An additional function can be integrated into the conveyor device in a constructively simple manner. An efficient conveyance of a fluid can be advantageously realized.
In addition, a pump with at least one inventive conveyor device and with at least one housing for accommodating the conveyor device is proposed, wherein the conveyor device comprises the fluid supply line adapter and/or the fluid discharge line adapter, which extends/extend from the conveyor chamber element at least up to an outer side of the housing when the conveyor device is arranged in the housing. The pump preferably is intended for use in a food sector, a chemical sector, a pharmaceutical sector, particularly for batch-compliant use, a vivarium sector (aquarium, etc.), a domestic appliance sector, a dental hygiene sector, an automobile sector, a medical sector, a water treatment sector or the like. The pump preferably comprises at least one drive unit, particularly the aforementioned drive unit, that has at least one driving element, particularly the aforementioned driving element, especially at least one eccentric shaft that for the most part is surrounded by the conveyor chamber element, the conveyor element and the pressing unit, particularly viewed along a circumferential direction extending around the drive axis of the drive unit. The drive unit, particularly at least the driving element, preferably is completely surrounded by the conveyor chamber element, the conveyor element and the pressing unit, particularly viewed along a circumferential direction extending around the drive axis of the drive unit. The inventive design makes it possible to achieve a secure accommodation of the fluid supply line adapter and/or the fluid discharge line adapter. It is possible to lead the fluid supply line adapter and/or the fluid discharge line adapter out of a housing of a pump, in which the conveyor device is arranged, in a constructively simple manner. A constructively simple connection interface, which can be sealed in a constructively simple manner, can be advantageously realized. An additional function can be integrated into the conveyor device in a constructively simple manner. An efficient conveyance of a fluid can be advantageously realized.
It is furthermore proposed that the fluid supply line adapter and/or the fluid discharge line adapter are arranged on the housing and/or the conveyor chamber element in a removable manner. When the conveyor device is arranged in the housing, in particular, the fluid supply line adapter and/or the fluid discharge line adapter preferably can be removed from the housing, particularly from the connecting piece and/or, in particular, the additional connecting piece, after loosening a securing unit, particularly a screw cap of the securing unit. The inventive design advantageously makes it possible to achieve a constructively simple exchangeability of the fluid supply line adapter and/or the fluid discharge line adapter. A very easy serviceability can be advantageously achieved.
It is furthermore proposed that the pump comprises at least one securing unit for securing the fluid supply line adapter and/or the fluid discharge line adapter on the housing by means of a form-fitting and/or frictional connection. The securing unit preferably comprises an external thread, particularly two external threads, that particularly is/are arranged on an outer side of the housing. The securing unit preferably comprises at least one screw cap, particularly two screw caps, that interacts/interact with the external thread/s and, in particular, firmly clamp a collar of the fluid supply line adapter and/or the fluid discharge line adapter in order to secure the fluid supply line adapter and/or the fluid discharge line adapter on the housing. It is preferred that the securing unit alternatively or additionally comprises at least one internal thread/s, into which the fluid supply line adapter and/or the fluid discharge line adapter can be screwed. It is furthermore conceivable that the securing unit alternatively or additionally comprises other components deemed sensible by a person skilled in the art for securing the fluid supply line adapter and/or the fluid discharge line adapter on the housing and/or on the conveyor chamber element by means of a form-fitting and/or frictional connection, e.g. a securing ring, a securing pin or the like. The inventive design advantageously makes it possible to counteract an inadvertent separation of the fluid supply line adapter and/or the fluid discharge line adapter. A very easy serviceability can be advantageously achieved. An adaptability to different connectivity options can be advantageously realized. A comfortable connection to differently designed fluid lines can be advantageously realized. A broad application spectrum for the efficient conveyance of a fluid can be advantageously realized.
It is furthermore proposed that the connecting piece and/or, in particular, the additional connecting piece are spaced apart from an inner wall of the housing, particularly viewed along a principal axis of the connecting piece and/or, in particular, the additional connecting piece, when the conveyor device is arranged in the housing. Viewed along the principal axis/axes of the connecting piece and/or, in particular, the additional connecting piece, the connecting piece and/or, in particular, the additional connecting piece is/are spaced apart from an inner wall of the housing, particularly at least the upper housing part and/or the lower housing part, when the conveyor device is arranged in the housing. The connecting piece and/or, in particular, the additional connecting piece preferably is/are spaced apart from the inner wall of the housing, particularly from the inner side of the upper housing part and/or the inner side of the lower housing part, along the entire circumference of the connecting piece and/or, in particular, the additional connecting piece when the conveyor device is arranged in the housing. In an alternative design of the pump and/or the conveyor device, however, it is also conceivable that the connecting piece and/or, in particular, the additional connecting piece abuts on the inner wall of the housing, particularly on the inner side of the upper housing part and/or on the inner side of the lower housing part, and is supported on the inner wall of the housing, particularly on the inner side of the upper housing part and/or on the inner side of the lower housing part, when the conveyor device is arranged in the housing. The inventive arrangement advantageously makes it possible to realize a freedom of movement in order to permit relative movements such that damages as a result of inadvertent contact with the fluid supply line adapter and/or the fluid discharge line adapter can be advantageously prevented when the fluid supply line adapter and/or the fluid discharge line adapter is/are arranged in the connecting piece and/or, in particular, in the additional connecting piece and/or movements can be dampened in a constructively simple manner by means of the movement compensation unit.
The inventive pump and/or the inventive conveyor device is/are not limited to the above-described application and embodiment. The number of individual elements, components and units of the inventive pump and/or the inventive conveyor device for fulfilling a function described herein particularly may differ from the number mentioned herein. With respect to the value ranges specified in this disclosure, values lying within the mentioned limits should also be considered as being disclosed and arbitrarily applicable.
Other advantages arise from the following description of the drawings. The drawings show an exemplary embodiment of the disclosure. The drawings, the description and the claims contain numerous characteristics in combination. A person skilled in the art will also expediently consider these characteristics individually and combine them into other sensible combinations.
The conveyor chamber element 20 is at least mostly, in particular completely, made of a plastic, particularly an injection-moulded plastic. However, it is also conceivable that the conveyor chamber element 20 is made of a different material deemed sensible by a person skilled in the art. The conveyor element 22 preferably is at least mostly, in particular completely, made of a rubber, particularly a synthetic rubber such as EPDM, FC, NBR or the like. However, it is also conceivable that the conveyor element 22 is made of a different material deemed sensible by a person skilled in the art.
The pump 10 comprises at least the drive unit 16 for acting upon the conveyor device 12 and at least one housing 14 for accommodating the conveyor device 12. The drive unit 16 preferably comprises at least one driving element 24 for acting upon the conveyor device 12 (see
The conveyor device preferably is at least mostly, in particular completely, arranged within the housing 14. The conveyor device 12 is at least mostly, in particular completely, surrounded by the housing 14. A person skilled in the art knows that the housing 14 particularly is intended for enveloping and/or supporting the conveyor device 12 and/or the drive unit 16 of the pump 10 at least partially, in particular completely. The housing 14 may be made of a plastic, a metal, a combination of plastic and metal or of a different material deemed sensible by a person skilled in the art. The housing 14 may have a shell design, a pot design, a combination of a shell design and a pot design or a different design deemed sensible by a person skilled in the art.
The housing 14 is formed at least separately from the conveyor chamber element 20 of the conveyor device 12, particularly from the conveyor device 12 as a whole, namely in such a way that the conveyor chamber element 20, particularly the conveyor device 12 as a whole, can be removed from the housing 14. The conveyor chamber element 20, particularly the conveyor device 12 as a whole, preferably can be removed from the housing 14 after the removal of an upper housing part 36, particularly together with the conveyor element 22 arranged on the conveyor chamber element 20. The conveyor device 12 preferably can be removed from the housing 14 as a whole, particularly after the removal of the upper housing part 36 of the housing 14, such that it is decoupled from a removal of individual components of the conveyor device 12. When the conveyor device 12, particularly the conveyor device 12 as a whole, is arranged in the housing 14, in particular, the housing 14 surrounds at least the conveyor chamber element 20, particularly the conveyor device 12, at least mostly along a circumferential direction extending in a plane that lies essentially perpendicular to a drive axis 70 of the drive unit 16.
Viewed along a direction extending transverse to the drive axis 70 of the drive unit 16, the conveyor chamber element 20 is arranged at least between the housing 14 and the conveyor element 22 of the conveyor device 12, in particular directly adjacent to the housing 14 or directly abutting on the housing 14 (see
The housing 14 furthermore comprises at least one receptacle 32, particularly at least two receptacles 32, 34, for accommodating at least one fluid supply line adapter 28 and/or one fluid discharge line adapter 30 of the conveyor device 12. The fluid supply line adapter 28 preferably is intended for being connected to a fluid line, particularly for realizing a supply of fluid to the conveyor chamber 18. The fluid discharge line adapter 30 preferably is intended for being connected to a fluid line, particularly for realizing a discharge of fluid from the conveyor chamber 18. The receptacle/s 32, 34 preferably is/are arranged in the upper housing part 36 of the housing 14 (see
The connecting piece 38 and/or, in particular, the additional connecting piece 40 respectively is/are arranged on at least one transverse extension 60, 62 of the conveyor chamber element 20, particularly designed integrally with the corresponding transverse extension 60, 62 (see
Viewed along the principal axis/axes 64, 66 of the connecting piece 38 and/or, in particular, the additional connecting piece 40, the connecting piece 38 and/or, in particular, the additional connecting piece 40 is/are spaced apart from an inner wall of the housing 14, particularly at least the upper housing part 36 and/or the lower housing part 72, when the conveyor device 12 is arranged in the housing 14 (see
The conveyor chamber element 20 comprises at least the connecting piece 38 for the fluid supply line adapter 28, which particularly is designed to differ from a hose, and/or at least the additional connecting piece for the fluid discharge line adapter 30, which particularly is designed to differ from a hose, wherein said connecting piece/s respectively is/are arranged on a side, particularly the outer side, of the conveyor chamber element 20 facing away from the conveyor element 22 (see
The conveyor device 12 comprises at least one functional unit 58, particularly a filter unit and/or a valve unit, as well as the fluid supply line adapter 28 and/or the fluid discharge line adapter 30, wherein the functional unit 58 is at least partially, in particular completely, arranged in the fluid supply line adapter 28 and/or in the fluid discharge line adapter 30 (see
The fluid supply line adapter 28 and/or the fluid discharge line adapter 30 is/are arranged on the housing 14, particularly on the upper housing part 36 and/or on the conveyor chamber element 20, in a removable manner. The pump 10 comprises at least one securing unit 42 for securing the fluid supply line adapter 28 and/or the fluid discharge line adapter 30 on the housing 14, particularly on the upper housing part 36, by means of a form-fitting and/or frictional connection. The securing unit 42 preferably comprises an external thread, particularly two external threats, that particularly is/are arranged on an outer side of the receptacle/s 32, 34 (see
The conveyor device 12 comprises at least one movement compensation unit 52 that is at least intended for at least partially compensating and/or damping relative movements between the fluid supply line adapter 28 and the connecting piece 38 when the connecting piece 38 is connected to the fluid supply line adapter 28 and/or for at least partially compensating and/or damping relative movements between the fluid discharge line adapter 30 and, in particular, the additional connecting piece 40 when the additional connecting piece 40 is connected to the fluid discharge line adapter 30 (see
The conveyor element 22 comprises at least one base body 76 that particularly is at least essentially designed in an annular manner (see
The activation extension 80, particularly the activation extensions 80, is/are designed in the form of form-fit and/or frictional engagement element/s that interacts/intact with the transmission element 82 by means of a form-fitting and/or frictional connection, particularly a form-fitting and/or frictional connection that is not firmly bonded, in order to at least transmit a driving force acting in a direction facing away from the activation side. The activation extension 80, particularly the activation extensions 80, preferably is/are clamped between two transmission elements 82, particularly transmission rings, that are arranged on the driving element 24 (see
Viewed in a plane, particularly in a plane extending at least essentially perpendicular to the drive axis 70, the base body 76 preferably has a cross-sectional shape that essentially is composed of a circular arc or an open ring and two inlet and/or outlet extensions that extend transverse to the circular arc or the open ring. The circular arc or the open ring of the cross-sectional shape of the base body 76 preferably extends along an angular range of less than 360° and, in particular, more than 90°. The inlet and/or outlet extensions of the cross-sectional shape of the base body 76, which extend transverse to the circular arc or the open ring, preferably are arranged such that they directly border on the circular arc or the open ring, particularly in end regions of the circular arc or the open ring. The activation extension 80, particularly the activation extensions 80, preferably extends/extend along a closed circular ring, wherein the activation extension 80, particularly the activation extensions 80, may form the circular ring itself/themselves. A maximum extent of the activation extension 80 along a central axis of the base body 76 or an overall extent of the multiple successive activation extensions 80 along a central axis of the base body 76 particularly is at least 5% smaller, preferably at least 10% and especially at least 20% smaller, than a maximum longitudinal extent of the base body 76. It is preferred that the activation extension 80 or the multiple successive activation extensions 80 altogether particularly extends/extend along an angular range of more than 270°, preferably less than 360° or 360°, on the activation side.
The conveyor chamber element 20 at least mostly surrounds the conveyor element 22 along a circumferential direction extending, in particular, in a plane that at least essentially lies perpendicular to the drive axis 70 of the drive unit 16 (see
The conveyor chamber element 20 has a counter surface 74 that interacts with the conveying surface 78 of the conveyor element 22 in order to convey a fluid, wherein said counter surface faces the conveyor element 22 and has at least one elevation 84, 86 that is oriented in the direction of the conveyor element 22 (see
The conveyor element 22, particularly the base body 76, has the conveying surface 78, which viewed in a cross section of the conveyor element 22, particularly in a cross section of the conveyor chamber 18, has a maximum transverse extent that at least essentially, in particular completely, corresponds to a maximum transverse extent of the counter surface 74 of the conveyor chamber element 20 (see
The conveyor chamber element 20 has at least one connecting region, particularly at least one connecting groove, preferably a sealing groove 88, which is arranged, in particular, on the inner side of the conveyor chamber element 20, wherein at least an edge region of the conveyor element 22, particularly an extension, preferably a sealing extension 90, of the conveyor element 22 arranged on the edge of the conveyor element 22 engages into said sealing groove, particularly in a sealing manner, when it is arranged on the conveyor chamber element 20 (see
The sealing extension 90 extends completely around the conveying surface 78 of the base body 76 of the conveyor element 22 and delimits the conveying surface 78. The sealing extension 90 preferably extends along an entire outer circumference of the base body 76. The sealing extension 90 preferably extends around the inlet and/or outlet extensions of the base body 76 and transforms, particularly in a seamless manner, into the annular basic shape of the base body 76 in order to delimit the conveying surface 78. The sealing extension 90 preferably has a transition region toward an edge region of the base body 76 of the conveyor element 22, wherein a cross section of said transition region differs from a cross section of an additional transition region of the sealing extension 90 toward the conveying surface 78 of the base body 76 (see
The conveyor device 12 furthermore comprises at least one pressing unit 96 that has at least one pressing element 98, 100, particularly at least one clamping ring, which is designed for acting upon the sealing extension 90 with a pressing force in the direction of the conveyor chamber element 20 and for compressing the sealing extension 90 at least in the region of the sealing groove 88 (see
The pressing unit 96 preferably is designed in such a way that the conveyor element 22 has an inhomogeneous compression, particularly at least in a non-conveying state of the conveyor element 22, along the maximum overall extent of the sealing region 102 or the sealing line, particularly along a maximum circumferential extent of the annular conveyor element 22. The pressing unit 96 has at least one pressing element 98, 100, particularly at least one clamping ring, wherein the conveyor element 22 is designed in an annular manner and pressed against an inner circumference of the annular conveyor chamber element 20 by means of the pressing element 98, 100. The pressing unit 96 preferably comprises at least two pressing elements 98, 100, particularly two clamping rings, between which the conveyor element 22 is arranged within the conveyor chamber element 20. The conveyor element 22 preferably can be pressed against the inner circumference of the annular conveyor chamber element 20 by means of the pressing elements 98, 100. The sealing extension 90 particularly is pressed into the sealing groove 88 due to the effect of the pressing element 98, 100 on the conveyor element 22. The pressing unit 96 has at least the pressing element 98, 100, particularly at least the clamping ring, wherein the conveyor element 22 has at least the sealing extension 90, and wherein the pressing element 98, 100 presses the sealing extension 90 against the conveyor chamber element 20, in particular, at least along a circumferential direction of the conveyor chamber element 20, particularly with an inhomogeneous pressing force along the circumferential direction. The pressing unit 96 has at least the pressing element 98, 100, particularly at least the clamping ring, that has a pressing surface 104, wherein said pressing surface has a varying level, particularly a varying distance from a surface, particularly an inner surface, of the pressing element 98, 100 facing the pressing surface 104, along a maximum longitudinal extent of the pressing surface 104 extending, in particular, along a circumferential direction of the pressing elements 98, 100. The varying level of the pressing surface 104 preferably is formed by different maximum heights of the pressing surface 104 along the circumferential direction. As an example,
The pressing unit 96 has at least the pressing element 98, particularly at least the clamping ring, and at least one additional pressing element 100, particularly at least one additional clamping ring, wherein the conveyor element 22 is designed in an annular manner and pressed against an inner circumference of the annular conveyor chamber element 22 by means of the pressing element 98 and the additional pressing element 100, and wherein the pressing element 98 and the additional pressing element 100 are arranged on the conveyor element 22 on opposite sides of the conveyor element 22. The pressing element 98 and the additional pressing element 100 of the pressing unit 96 preferably have an at least essentially analogous design. The pressing element 98 and the additional pressing element 100 are arranged on the conveyor chamber element 20 mirror-symmetrical, particularly in order to press the conveyor element 22 against the conveyor chamber element 20 and to press the sealing extension 90 into the sealing groove 88. The conveyor chamber element 20 has at least the groove, preferably the sealing groove 88, which particularly extends along an inner circumference of the annular conveyor chamber element 20 and into which at least the sealing extension 90 of the particularly annular conveyor element 22 is pressed by means of the pressing element 98, particularly the clamping ring, and/or by means of the additional pressing element 100 of the pressing unit 96, wherein a compression of the sealing extension 90 is inhomogeneous along a maximum longitudinal extent of the sealing extension 90, particularly along a circumferential direction of the conveyor element 22. Alternatively or additionally to a varying level of the pressing surface 104 of the pressing element 98 and/or the additional pressing element 100, it is conceivable that the conveyor element 22 has at least the sealing extension 90, which is pressed against an inner circumference of the annular conveyor chamber element 20 by means of the pressing unit 96 and has a varying maximum thickness 68 along the maximum longitudinal extent of the sealing extension 90, particularly along a circumferential direction of the conveyor element 22. Different designs of the pressing unit 96 deemed sensible by a person skilled in the art for generating an inhomogeneous compression of the sealing extension 90 along the circumferential direction in the sealing region 102 are likewise conceivable.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 128 682.4 | Oct 2019 | DE | national |
This application is the U.S. national stage of PCT/EP2020/079821 filed on Oct. 22, 2020, which claims priority of German Patent Application No. 10 2019 128 682.4 filed on Oct. 23, 2019, the contents of which are incorporated herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/079821 | 10/22/2020 | WO |