The present invention relates to an ESD (Electrostatic Discharge) protection structure and more particularly, to an ESD structure used in a conveyor of a LCD manufactory.
In current manufacturing processes for flat displays, rollers are disposed in a conveyor to convey unmanufactured substrates. A rubber layer or a plastic layer is generally formed to cover the surface of the roller, serving as a buffer layer to release collision therebetween during conveyance and to prevent the conveyed substrates from scratch. Furthermore, a rubber or plastic layer can provide considerable friction force, making the conveyance smooth. Nevertheless, rubber or plastic is unable to withstand high temperatures and therefore cannot be used for high temperature process. Thus a roller made of or covered by thermal resist material is generally used in areas where the processing temperature exceeds the temperature which rubber or plastic cannot withstand.
The thermal resist material is, for example, quartz. Generally, substrates of flat displays are glass. Quartz roller and glass are both electrical isolation material, and during conveyance, this combination easily accumulates mass static electricity due to the friction generated between quartz and glass. Electrostatic discharge device such as ionizers or soft x-rays also cannot be used to neutralize the accumulated charge under high working temperatures such as over 600° c. The accumulated mass static electricity has no way to disperse thus product damage may result.
In the manufacturing process for low temperature poly silicon liquid crystal display for example, a rapid thermal annealing process (RTP) is a typically employed. A typical annealing process apparatus is shown in
An embodiment of the invention provides a conductive roller with a conductive roller body, and a supporter supporting the conductive roller body. The supporter is electrically conductive and is grounded.
An embodiment of the invention also provides an annealing apparatus, for performing a heating process on at least one glass substrate. The annealing apparatus has a plurality of rollers, among which one is electrically conductive. The conductive roller comprises a conductive roller body and a supporter supporting the conductive roller body. The supporter is electrically conductive and is grounded.
A detailed description is given in the following with reference to the accompanying drawings.
Embodiments of the present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The conductive roller body 30 comprises refractory material such as stainless steel or silicon carbide. The silicon carbide, which is adapted to RTP chamber of annealing apparatus, can withstand high temperature. Other refractory material such as silicon molybdenum, graphite, and metal carbides, capable of enduring temperatures exceeding approximate 600° C. can also be employed.
When a glass substrate 42 (not shown in
The conductive roller body 30 can be stainless steel or silicon carbide. Silicon carbide, a kind of refractory material, can endure high temperature and is adapted to the RTP chamber of an annealing apparatus. Other refractory material such as silicon molybdenum, graphite, and metal carbides, capable of enduring temperatures exceeding approximate 600° C. can also be employed. The stainless steel roller, nevertheless, cannot endure high temperatures, and thus is typically only used in a conveyor area where the temperature is relatively lower.
Two conductive supports 32 are respectively mounted at two ends of the conductive roller body 30. Each conductive support 32 has an adapter 320 comprising a sleeve disposed at one end of the conductive roller body 30. Two O rings 324 are disposed between each adapter 320 and conductive roller body 30 for fixing the conductive roller body 30. A space 322 is formed between an end of the conductive roller 30 and a bottom surface of the adapter 320. An elastic element 34 such as metal spring is disposed therein. The elastic element 34 can be a metal spring or other metal elastic element, electrically connecting conductive roller 30 and adapter 320.
A conductive rotary connector 36, such as a mercury connector, comprises a conductive rotary body 360 and a conductive connecting element 362 connected to the rotary body 360. The rotary body 360 is connected to the end 321 of the support 32 and can relatively rotate on the connecting element 362. The connecting element 362 is then electrically coupled to the a ground through a conductive line 38. A belt 328 physically links conductive rotary connectors 36 to make them roll or rotate simultaneously.
Thus, a conductive path is formed by the conductive roller body 30, conductive elastic element 34, mercury connector 36, and conductive line 38. When static electricity is generated by roller 3 and glass substrate 42, static electricity disperses through the conductive path to the ground GND, thereby preventing ESD damage.
Deployment in a RTP Annealing Apparatus
In reference to
The roller 3 is driven by a belt 328 driven by a motor (not shown) of a conveyer 50 for conveying the substrates 42 through pre-heat area 10, thermal process 20 and post process heating zone 30. Whenever static electricity generated by a roller 3 and the glass substrate 42, this static electricity can be easily conducted through the roller 3, conductive elastic element 34, conductive support 32, conductive rotary connector 36, conductive line 38, to ground GND, thereby preventing ESD damage.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
93112728 | May 2004 | TW | national |