In mining, it is typical to employ one or more conveyors to haul or convey crushed ore. For example, a continuous miner includes a miner conveyor that gathers and directs the material away from the mining face. The miner conveyor extends toward the rear of the miner, and deposits the material removed from the mining face onto a conveyor bridge module. In turn, the conveyor bridge module conveys and eventually deposits the material into a hopper, which sizes the material and deposits the sized material onto a face conveyor. The face conveyor carries the material away from the mining site. Most conveyor systems employed in mining include a conveyor belt and a pair of conveyor sprockets supporting the conveyor belt. The conveyor belt can be based on an endless belt or chain flights. The conveyor sprockets are mounted on a drive shaft, which in turn is coupled to a conveyor frame.
Through continued use, a conveyor sprocket may become worn and potentially damaged. When this happens, the conveyor sprocket must be removed from the drive shaft and replaced. Removing and replacing the conveyor sprocket can be costly and time consuming. First, the drive shaft needs to be separated from the conveyor frame or other support structures. This may require removing or disassembling the conveyor frame. Once the drive shaft is disengaged, the conveyor sprocket is pulled off the drive shaft and a new one is slid into position. Removing and replacing the conveyor sprocket is time-consuming, cumbersome, and costly due to the equipment downtime. Thus, there has developed a need for a conveyor sprocket assembly that can be expediently and easily removed and replaced.
In some embodiments, a conveyor sprocket assembly generally includes a support shaft, at least one conveyor sprocket slidably engaging the support shaft, and an abutment stop positioned adjacent the conveyor sprocket. The abutment stop is configured to be removed to allow the conveyor sprocket to slide axially along the support shaft.
In other embodiments, a conveyor sprocket assembly defines an axial length and generally includes a support shaft having a length shorter than the axial length. At least one conveyor sprocket slidably engages an end portion of the support shaft and a conveyor drive assembly. The conveyor sprocket comprises a generally cylindrical member defining an axial opening therein for receiving the end portion of the support shaft. An abutment stop is positioned adjacent the conveyor sprocket. The abutment stop is configured to be removed to allow the conveyor sprocket to slide axially along the support shaft for removing the conveyor sprocket from the conveyor drive assembly.
In still other embodiments, a conveyor system defines a longitudinal axis, and generally includes a conveyor extending along the longitudinal axis, two side frames, a support shaft, at least one conveyor sprocket, and an abutment stop. The conveyor defines two sides that are each parallel to the longitudinal axis. The two side frames respectively extend along each side of the conveyor. The side frames define a gap therebetween. The support shaft has a length shorter than the gap. The conveyor sprocket slidably engages an end portion of the support shaft and a respective side frame. The abutment stop is positioned adjacent the conveyor sprocket, and is configured to be removed for removing the conveyor sprocket from the side frames.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
The conveyor sprocket assembly 60 includes conveyor sprockets 90 and an abutment stop 100 positioned adjacent the conveyor sprockets 90. Each sprocket 90 is provided with a plurality of teeth 110 constructed and arranged to drivingly engage the conveyor 30. Referring also to
In the illustrated embodiment, each conveyor sprocket 90 is formed as a single-piece, unitary sprocket, as opposed to a sprocket capable of being split or separated into multiple mating sections, e.g., a sprocket separable into two halves along a radial direction. Depending on the usage requirement or preferences for the particular conveyor sprocket assembly 60, a conveyor sprocket 90 that is separable into multiple sections may be cumbersome to assemble. For example, the parting or splitting lines of mating sections may be hard to align, and a locking mechanism is required to releasably or detachably lock the sections together, which may increase the sprocket's weight and costs of manufacturing and maintenance. Therefore, the conveyor sprocket assembly 60 preferably utilizes the illustrated single-piece conveyor sprockets 70. In some embodiments, however, one or more of the conveyor sprockets 90 may be separable into a plurality of complementary sections. Each conveyor sprocket 90 can be formed from metal, or can be made in other manners from other materials such as plastic.
Although
Referring also to
The illustrated generally cylindrical member 140 defines an inner surface 150 formed to be in mating engagement with the end portion 130 of the support shaft 120. In the illustrated embodiment, the inner surface 150 comprises splines 160, and the end portion 130 of the support shaft 120 comprises mating surfaces 170 formed to be in complementary relationship with the splines 160. Although
The illustrated abutment stop 100 includes a pair of shells 180 secured to the support shaft 120. In other embodiments, however, the abutment stop 100 may utilize other numbers of shells 180. For example, the abutment stop 100 may include one or more shells 180. Although
In the illustrated embodiment, the conveyor sprocket assembly 60 includes a means for removably securing 190 each shell 180 of the abutment stop 100 on the support shaft 120. Each means for removably securing 190 applies a clamp force normal to the support shaft 120. In the embodiment shown, the means for removably securing 190 each shell 180 is a fastener, and as specifically shown in
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.
Number | Name | Date | Kind |
---|---|---|---|
1623814 | Scott | Apr 1927 | A |
3685367 | Dawson | Aug 1972 | A |
4037713 | Soliman et al. | Jul 1977 | A |
4049112 | Tyslauk | Sep 1977 | A |
4253344 | Kerklies | Mar 1981 | A |
4437564 | Redder et al. | Mar 1984 | A |
4865183 | Hodlewsky et al. | Sep 1989 | A |
5295917 | Hannum | Mar 1994 | A |
5316522 | Carbone et al. | May 1994 | A |
5389044 | Bandy, Jr. et al. | Feb 1995 | A |
5469958 | Gruettner et al. | Nov 1995 | A |
5702316 | Cole | Dec 1997 | A |
5833562 | Walker, Sr. | Nov 1998 | A |
5947265 | Merten et al. | Sep 1999 | A |
6074316 | Murrietta, Sr. | Jun 2000 | A |
6086495 | Stebnicki et al. | Jul 2000 | A |
6146299 | Harvey | Nov 2000 | A |
6758776 | Fye et al. | Jul 2004 | B2 |
7228924 | DeLong et al. | Jun 2007 | B2 |
7261291 | Forch et al. | Aug 2007 | B2 |
7604113 | Pluszynski et al. | Oct 2009 | B2 |
7753193 | Kanaris | Jul 2010 | B2 |
7819766 | Kennedy | Oct 2010 | B2 |
8042682 | Ertel | Oct 2011 | B2 |
8070375 | Moore | Dec 2011 | B2 |
20040147348 | Yiu et al. | Jul 2004 | A1 |
20070161443 | Krisl | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
2001227601 | Aug 2001 | JP |
1537615 | Jan 1990 | SU |
1586891 | Aug 1990 | SU |
Number | Date | Country | |
---|---|---|---|
20140027247 A1 | Jan 2014 | US |