This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/EP2020/062716, filed internationally on May 7, 2020, which claims the benefit of GB 1906418.7, filed on May 7, 2019.
The present disclosure relates generally to a method and apparatus for conveying items on a conveyor.
Belt conveyor systems are widely used to enable industrial automation. Conveyor systems are frequently composed of multiple conveyor units, at or upon which different operations may be performed on the items, each unit with a continuous belt and motor. A challenge encountered in transporting deformable items (e.g. articles of food) on such conveyor systems is transferring the items from a conveyor belt to another element in the system without damaging the items.
In addition to gravity, food items may adhere to conveyor belts. For example, when portioning food items conveyed on a porous belt using a water jet ligaments or other thin components can become lodged in the openings of a porous conveyor belt. This makes it more challenging to transfer objects from a cutting conveyor to a receiving conveyor.
The current disclosure provides a method and apparatus for facilitating transfer of an item to or from a conveyor assembly; for example, for transferring an item from an output end of a conveyor belt to a receiving location.
There is provided a conveyor system, comprising: a first conveyor assembly having: an input end; an output end, and a conveyor belt arranged to convey an object from the input end towards the output end in a direction of travel, wherein the conveyor system comprises a fluid projection mechanism, the fluid jet being arranged to provide a fluid suitable for providing a lifting force to a conveyed object as the conveyed object passes over the fluid projection mechanism.
The input end may be any location of the conveyor assembly at which the object is placed on the conveyor belt, either at the start of the conveyor belt or part way along the conveyor belt in the direction of travel. Similarly, the output end of the conveyor assembly may be at the end of the conveyor belt or part way along the conveyor belt, or wherever the conveyor assembly is configured to direct the object off the conveyor belt. The output “end” of the conveyor belt as described herein may be the point after which the belt makes a substantial change of direction such that an object being conveyed in a direction of travel may be conveyed no further by the belt in that direction. Essentially the belt reverses course back to the beginning of the conveyor assembly.
The fluid projection mechanism may comprise one or more fluid jets, which may preferably be provided at an output end of the conveyor assembly. In general, at the output end of a conveyor assembly, the belt will pass over some kind of roller or lip, and as the belt passes over the roller, the belt will change its trajectory away from the direction of travel of the general direction of travel if the conveying side of the belt. An item resting on the belt and moving in the direction of travel will therefore follow this change of direction (downwards) before being “picked up” by a receiving belt. This change of direction in transfer means that forces are applied to the item, which can be undesirable when the items being conveyed are fragile, as is often the case with food items, for example. The solution provided is to provide a lift force to the item as it passes over a gap between the output end of a conveyor assembly and the receiving assembly. The lifting force is provided to counteract the force of gravity acting on the object so as to maintain a trajectory close or equal to that of the direction of travel of the object on the conveyor belt. The lifting force may be provided to an underside of the item on the conveyor as it reaches the end of the conveyor assembly, to provide an effective bridging means from the end of the conveyor assembly. One or more streams of fluid are introduced, that lift the item as the item approaches the end of the conveyor assembly where a gap might be present, and thus can prevent the item getting trapped, damaged or lost.
The jets may optionally provide one or more fluid streams at other points of the conveyor assembly in addition to or instead of having a fluid projection mechanism at the output end of the conveyor assembly. If it is desirable to transfer a product from an intermediate portion of a conveyor belt, the fluid jets may provide fluid streams arranged to provide a lifting force to a conveyed item at the intermediate portion. Alternatively, it may be desired to transfer an item onto the input end or intermediate portion of a conveyor belt.
The conveyor belt may have any structure or properties that allows the belt to travel in a cycle to convey objects placed on the conveyor belt from the input end to the output end. For example, the conveyor belt may be a continuous material or may be formed of modular sections linked together as a chain.
The fluid projection mechanism ejects fluid at a velocity such that it may provide a force to an object in the path of the ejected fluid. Any matter may be ejected by the fluid projection mechanism, in the form of a liquid, gas, aerosol or mixture of the above. The fluid projection mechanism is any mechanism which can eject, project, propel, or throw fluid and hence alternative terminology such as “fluid ejection mechanism” is equivalent to “fluid projection mechanism” as used throughout the description.
The lifting force provided by the fluid to a conveyed item need not in fact raise the height of the conveyed item, it may simply provide a force counteracting gravity, so as to reduce a contact force with the conveyor belt, or to cushion the landing of an item falling under gravity onto a conveyor belt.
The conveyor system described herein can provide more control to the forces acting upon, and therefore movement of items as they pass through a system from conveyor assembly to conveyor assembly—this means that items will sustain less damage as they move through a conveyor system. Optionally the fluid projection mechanism may be arranged to provide the fluid at an angle between a first angle perpendicular to the direction of travel and a second angle parallel to the direction of travel.
In this way the jets can follow the motion of the conveyed item, or act in the direction of travel.
Optionally, the system further comprises a conveyor roller comprising: a body having a rolling surface between a first end and a second end; a fluid cavity located within the body, and a fluid channel arranged to connect the fluid cavity with the rolling surface, the fluid channel being arranged such that a pressurised fluid in the fluid cavity may pass through the fluid channel to provide a stream of fluid from the rolling surface.
The fluid cavity may be any space in which pressured water can be contained. The cavity could be in communication with an external water source (i.e. the mains) or an external reservoir, e.g. pressurised gas cannister. The fluid cavity may simply be a conduit/pipe for conducting fluid to the channels from somewhere else.
The fluid channel may be a single slit formed in the rolling surface extending in a direction of a longitudinal axis of the conveyor roller, about which the roller rotates. Alternatively, the fluid channel comprises a plurality of fluid channels arranged on the rolling surface to produce a plurality of fluid streams. The location of the fluid channels may be arranged so as to optimise the timing of a fluid stream and force produced by a fluid stream
Optionally, the conveyor belt may permeable, such that the fluid can pass from the rolling surface through the conveyor belt. The fluid may pass through the belt and in this way the fluid streams can act to overcome any adhesion or adhesive force that exists between the belt and the item.
Optionally, the conveyor belt comprises a plurality of perforations, and roller comprises a plurality of fluid channels is arranged such that the plurality of fluid channels are configured to align with the perforations such that the a plurality of streams of fluid pass from the rolling surface through the conveyor belt. In this way the roller rotates at the same speed as the belt passes over it such that the perforations move at the same rate as the fluid channels.
Optionally, the roller body comprises an inner axle, and an outer axle, and wherein a plurality of fluid channels are located in the outer axle; the fluid cavity is located in the inner axle, the fluid cavity comprising a fluid cavity outlet located on an outer face of the inner axle, wherein the outer axle may be rotatable about the longitudinal axis with respect to the inner axle such that the plurality of fluid channels cyclically move from a first position in communication with the fluid cavity outlet to a second position not in communication with the fluid cavity outlet.
The inner axle and outer axle can be controlled independently of each other. The provision of multiple channels over the fluid cavity outlet means multiple jets can be controlled from a single pressurised source of fluid. The fluid supply may be provided at an end of the inner axle or roller assembly so as not to interfere with the rolling motion of the roller assembly.
Optionally, the conveyor assembly further comprises a lip assembly, the conveyor belt being arranged to pass over the fixed lip assembly, wherein the fluid projection mechanism is located at the lip assembly, and arranged to provide the fluid as the conveyed object passes over the lip assembly. A lip assembly may be a part of the conveyor assembly over which the conveyor belt passes. In general the conveyor belt will change direction as it passes over a lip, and a lip may form an output point of a conveyor assembly from which a conveyed item is transferred to some other assembly.
Optionally, the lip assembly comprises: a body having a conveying surface, a fluid cavity located within the body, and a fluid channel arranged to connect the fluid cavity with the conveying surface, the fluid channel being arranged such that a pressurised fluid in the fluid cavity may pass through the fluid channel to provide the fluid for providing a lifting force to the conveyed object from the conveying surface.
Optionally, the lip assembly comprises a plurality of fluid channels arranged to provide a plurality of streams of fluid for providing the lifting force to the conveyed object. A plurality of fluid channels can be located on the surface of the lip assembly to provide a force at a pre-determined location.
Optionally, the fluid projection mechanism is located at the output end of the conveyor assembly, and arranged to provide the fluid as the conveyed object passes over the output end. As the conveyor belt passes over the output end the conveyed item will change its direction of motion in accordance with the forces acting on it—including gravity, the motion of the belt and any adhesion between the item and the belt. The fluid projection mechanism is provided at the output end to control the motion of the item as it leaves the belt.
A roller for a conveyor assembly is provided, comprising: a body having a rolling surface between a first end and a second end; a fluid cavity located within the body, a fluid channel arranged to connect the fluid cavity with the rolling surface, the fluid channel being arranged such that pressurised fluid in the fluid cavity may pass through the fluid channel to exit the body through the rolling surface to provide a fluid for directing at a conveyor belt of the conveyor assembly. Such a roller may be retro-fitted to an existing system to provide more control to the movement of conveyed items.
Optionally, the body comprises an inner axle and an outer axle, the fluid channel is located in the outer axle; the fluid cavity is located in the inner axle, and the fluid cavity comprises a fluid cavity outlet located on an outer face of the inner axle, wherein the outer axle is rotatable about the longitudinal axis with respect to the inner axle such that the fluid channel cyclically moves from a first position in communication with the fluid cavity outlet to in a second position not in communication with the fluid cavity outlet. The inner axle may be fixed so it may be mounted and in communication with a fluid line from which it receives fluid. The rotation of the outer axle may be controlled independently of the conveyor belt, or the motion of the outer axle may be determined by the motion of the conveyor belt.
Optionally, the body is cylindrical, the body is arranged to rotate about a longitudinal axis, and the fluid channel is arranged perpendicular to the longitudinal axis.
Optionally, the inner axle is fixed to prevent rotation about the longitudinal axis.
Optionally, the first position occupies an angular range perpendicular to the longitudinal axis between a first angle and second angle, wherein the first angle is perpendicular to a direction of travel of a conveyor belt the roller and the second angle is parallel to the direction of travel of a conveyor belt. This range of angles may provide a lifting force and also a propulsive force in the direction of travel of the item.
A method of conveying an object from a first conveyor assembly is provided, the conveyor assembly having an input end and an output end and comprising a conveyor belt arranged to convey an object in a direction of travel from the input end towards the output end, the method comprising: conveying an object on the conveyor belt; providing a fluid projection mechanism arranged to project a fluid, and directing the fluid to provide a lifting force to the conveyed object as the conveyed object passes over the fluid projection mechanism. Conveying means transporting from one point on the conveyor assembly to another.
Optionally, directing the fluid comprises directing the fluid at an under-side of the object. Optionally, the fluid is directed in a direction upwards against gravity.
Optionally, the output end comprises an output roller, the method further comprises: providing the fluid projection mechanism on the output roller, and providing the lifting force is done so as to lift the object from the conveyor belt as it passes over the roller.
Optionally, the output end comprises a lip assembly, the conveyor belt is arranged to pass over the lip assembly to return to the input end, and the method further comprises: providing the one or more fluid projection mechanisms on the lip assembly, and providing the lifting force is done so as to lift the object from the conveyor belt as it passes over the lip assembly.
Optionally, the method further comprises: providing the fluid projection mechanism in an angular range between a first angle perpendicular to the direction of travel and a second angle in the direction of travel.
Optionally, the fluid comprises one of air; water, and a mixture of air and water. The properties of a fluid stream may be selected depending on the properties of the item being conveyed. Air may provide a more gentle force than water, which may be too abrasive for the most fragile of items. Different fluid stream characteristics may be determined by a nozzle or fluid channel aperture to create different flow types.
Examples of the present disclosure will now be explained with reference to the accompanying drawings in which:
Throughout the description and the drawings, like reference numerals refer to like parts.
An item resting on the conveyor belt under the force of gravity will be transported from the input end along the conveyor belt to the output end. In all conceivable conveyor belt systems, at the output end the belt 130, if it is a continuous belt, must undergo a change of direction so as to loop back to the input end. With this change of direction, the surface of the belt changes from parallel to the direction of travel between the input end and the output end.
While an object is being transported on a conveyor assembly 100a specific actions or operations may be performed, and once that operation has been completed the item 150 may be passed to a further conveyor assembly 101a. The further, or receiving assembly 101a may also comprise a continuous belt 135 and an input end roller 115 as shown in
In the variant shown in
As can be seen in
It will also be appreciated that the surfaces of conveyor belts 130 and 135 shown in
The size of the aperture between a first conveyor assembly 100a and a receiving conveyor assembly 101a might conceivably be minimised through reducing the size of a diameter D of an output roller 120 and an input roller 115 or reducing a radius of curvature of an output removable lip 140. Nonetheless an aperture, recess of simply gap will always exist between a first conveyor assembly and a receiving (conveyor) assembly due to the non-zero thickness of a continuous conveyor belt which is required to undergo a change of direction to loop back to the input end of the conveyor system.
In a conveyor assembly 100, a conveyor roller 110 or 120, may be a driving or a driven pulley. A driving pulley may be used to provide a drive to move a conveyor belt 130. Conveyor assembly may comprise one or more driving pulleys, and the driving pulleys may provide the driving force to the conveyor belt through gearing or belt drive. Driven pulleys may be used to alter a path of the conveyor belt in a vertical direction, if the roller is not placed in the same plane as the input end and output end. Other conveyor rollers may be provided to simply support the conveyor belt between the input and output ends. In general a roller is cylindrical, and rotated about a longitudinal axis of the cylinder. The roller comprises a rolling surface which may be arranged to contact the conveyor belt 130. The rolling surface may move at the same speed as the conveyor belt such that there is no relative motion between the point of the rolling surface that is in contact with the conveyor belt and the conveyor belt.
A conveyor system may comprise any number of conveyor assemblies 100, 101, and where the system comprises many such assemblies, a fragile item to be conveyed between the assemblies may undergo repeated phases in which tension is applied across it, and repeatedly going from one conveyor assembly to the next may negatively affect the properties of the conveyed item.
The lifting force is provided to the part of the conveyed item in contact with the conveyor belt so as to counteract, or to overcome a force on the conveyed item. This may be the force of gravity, adhesion to the conveyor belt surface, or mechanical compression into the conveyor belt surface due to previously applied forces (e.g. cutting). The fluid streams may therefore lift the item upwards against the force of gravity from the belt, or the fluid streams may be directed to simply mitigate or act against the force of gravity as the conveyed item passes over the output end, so as to alter its trajectory from that where no lifting force was applied. As such, where the fluid streams are applied at the output end of a conveyor assembly, they may be arranged to minimise a deviation from the trajectory prior to passing over the output end. Put another way, a conveyed item may be conveyed from one assembly to a receiving assembly (of any kind) with substantially no deviation in its trajectory from the trajectory on the first assembly.
Various general example arrangements for the provision of fluid streams to a conveyed item 150 will now be described which apply to arrangements described herein. One or more fluid streams 205 may be provided continuously at a point at which a conveyed item 150 is to be transferred from a belt. One or more fluid streams 205 may be arranged to pass through perforations present on the conveyor belt 130. The one or more fluid streams 205 may be employed with variable velocities so as to provide a different lifting force at different points along the modified trajectory of the conveyed item 150. The one or more fluid streams 205 may be arranged to be actuated sequentially as the conveyed item 150 passes over them.
A conveyor belt 130 that is not perforated may be employed. In this case, one or more high pressure fluid streams 205 may be applied to the underside of the conveyor belt 130 as the conveyed item 150 passes over the fluid stream location so as to provide an impulse to the underside of conveyed item 150 such that it deviates from the standard trajectory in the direction of travel from the input end to the output end. This would effectively jolt or bump the conveyor belt 130 from the underside, to jump an item from the conveyor belt 130.
Conveyor assemblies such as those described herein may be provided with known sensors for determining the position and velocity of conveyed items 150 on a conveyor belt, and these senses may provide signals to a conveyor control unit (not shown in the figures) which may be arranged to provide the fluid streams when a conveyed item is in the correct location.
Where a conveyed item is to be passed to a receiving conveyor assembly 100b, the one or more fluid streams 205 effectively lift the conveyed item from the conveyor belt so as to provide it with a trajectory which is modified from that of a projectile that is falling under gravity. The modified trajectory may be arranged such that the conveyed item 150 arrive at a receiving conveyor assembly 201 at a point on the receiving belt 135 where the direction of motion of the receiving belt substantially the same as the motion of the conveyed item, as shown in
In
The fluid channels 326 are shown in the figures as extending radially through the outer axle 325. Various other shapes may be employed to adjust the direction of the fluid stream emanating from the fluid channels. If the channels are radial then the fluid streams are directed perpendicular to an object resting on a conveyor belt 130 that is passing over the roller assembly. Therefore, the channels may be adjusted to direct fluid streams at any oblique angle to an object so as to provide a force to an object that is approaching the roller assembly, or to an object that has passed over the roller assembly. Where the fluid stream are directed at any angle other than in the radial direction, they will provide a torque to the roller assembly, as in the case of an aeolipile. This torque force is a turning moment provided to the roller assembly to turn about its longitudinal axis and can be used to provide a drive force to the conveyor assembly.
The inner axle 321 may be fixed with respect to a conveyor assembly in which the roller assembly is installed. In this way the fluid cavity outlet is in a fixed position with respect to the conveyor belt and the direction of travel. This in turn means that the range of angles over which the fluid streams are produced is determined by the orientation of the fluid cavity outlet 323. Alternatively, the inner axle 321 may be controllably rotated with respect to the conveyor assembly so as to provide a further controllable range of angles over which the fluid streams may be directed.
The conveyor roller 420, which may be any of a driven pulley, a driving pulley, or other roller assembly, comprises gear sprockets 428. Sprockets 428 are arranged on the surface of the roller 420 such that the roller 420 rotates at the same speed as the conveyor belt 430, since the gear sprockets are arranged to align with a series of perforations 435 in the conveyor belt 430. The sprockets may provide a drive force to the conveyor belt if the roller is a driving pulley, or the conveyor belt may rotate the conveyor roller via the sprockets, where the conveyor roller is a driven pulley. The fluid channels 426 of the roller 420 are also arranged in such a way as to align with the holes of the conveyor belt 430 as the conveyor roller rotates with the belt such that fluid streams 427 may pass from the output of the fluid channels through the holes in the conveyor 430, to act on a conveyed object. In the arrangements shown in
As can be seen from the arrangement shown in
The principle of the present disclosure may be applied to a conveyor assembly such as that shown in
The conveyor assembly may be provided with a conveyor roller 780 at the located underneath conveyor belt 730 at the location at which the movable end of the flip assembly 770 meets the belt 730. The conveyor roller 780 may be a conveyor roller such as those shown in
The fluid streams provided in the arrangements described in the foregoing may comprise any of air, water, a combination of air and water, or a combination of any other gas and liquid suitable for the purpose for which it is applied. The mixture of gas and liquid may be varied depending on the nature of the conveyed item.
An advantage of the provision of fluid streams for the transfer of conveyed items from one conveyor assembly to a further conveyor assembly is that the conveyor assemblies may be arranged along a substantially flat plane. This allows for the straightforward delivery of a product from end to end of a chain of conveyor assemblies. This can assist any human operators who may be required to work on the conveyed items as they are conveyed. The fluid streams which are applied to the underside of the conveyed item may keep the item moving tangential to the top of the conveyor belt in the direction of travel to avoid the dip between two conveyor assemblies and associated tension due to a conveyed item contacting rollers which will be moving in opposite directions.
An alternative conveyor assembly arrangement according to the present disclosure is shown in
The item 850 being conveyed on conveyor belt 830 reaches the end of the conveyor assembly 801 and will fall under gravity onto the second conveyor assembly 802. Since the directions of travel are different, the instantaneous force which will act on the item 850 as it lands on conveyor belt 835 will not only include the forces of impact but also shear forces if the conveyor belt 832 is in motion at the point of impact. Fluid projection assembly 880 is provided underneath the conveyor belt 835 at or near the location where an item 850 is to be received on the second conveyor assembly 802. The fluid projection assembly 880 is arranged to provide one or more streams of fluid which may act on the item 850 so as to increase the time over which the item 850 must undergo acceleration from the first direction of travel to the second direction of travel. The streams of fluid may be arranged to provide a force which acts against the force of gravity so as to slow the rate of falling of the item 850; the fluid streams may also provide a force that is substantially in the same direction of travel as the direction of travel of the receiving conveyor belt 835. In this way the relative motion between the item 850 and the conveyor belt 835 will be lessened at the point of impact, and so the force transmitted to the item is lessened. In this way a fragile item is less likely to be damaged during transition from the first assembly 801 to the second assembly 802. The streams of fluid cushion the fall of the item.
A variant is shown in
A conveyor belt used in any of the arrangements described above may be provided with holes of differing shapes and sizes to provide different fluid streams to the conveyed object. For example, deflection means might be provided in the centre of the holes or perforations 428 and thereby to create an indirect stream of fluid and a more gentle force to a conveyed object.
One example of a deflection means is that designed to create a film of fluid, as in a “mushroom” jet. A conical or pyramidal member is placed in the path of the fluid stream with the vertex of the member directed against the flow of the fluid stream. The fluid stream may be deflected by the lateral sides of the member such as to produce a film of fluid. Such a film may be useful where a conveyed item is particularly fragile, since the force transferred from the fluid to the item can be spread over a larger area.
The fluid channels arranged to provide the fluid jets may further comprise a nozzle arranged to control the properties of the fluid streams. Examples of such nozzles may be spray, flat or angled nozzle. The nozzle may be arranged to provide a jet, a flat stream, a cone, or a diffuse mist.
A further advantage of providing the fluid streams on a conveyor roller or movable axle is that the fluid streams rotate at the speed of the conveyor belt and therefore also add the speed of the conveyed item such that a fluid stream will act upon the same location of the conveyed item and not move across the surface of the item, as the embodiment shown in
The claims are not limited to particular embodiments set out in the description, and the skilled person will appreciate that multiple modifications or additions may be made to the specific embodiments described herein, without departing from the scope of the claims. Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the scope of the disclosed concepts, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the disclosed concepts.
Number | Date | Country | Kind |
---|---|---|---|
1906418 | May 2019 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/062716 | 5/7/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/225364 | 11/12/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
512182 | Scheurer | Jan 1894 | A |
1496376 | Perley | Jun 1924 | A |
1706734 | Hughes | Mar 1929 | A |
2168419 | Paterson | Aug 1939 | A |
2377123 | Ballamy | May 1945 | A |
3319766 | Crosby et al. | May 1967 | A |
3561552 | Rischke | Feb 1971 | A |
3656617 | De Bie | Apr 1972 | A |
3756374 | Burt et al. | Sep 1973 | A |
3872695 | Busek | Mar 1975 | A |
4008888 | Vinciguerra | Feb 1977 | A |
4106174 | Ilines | Aug 1978 | A |
4122941 | Giles et al. | Oct 1978 | A |
4308928 | Oshima et al. | Jan 1982 | A |
4310276 | Castagnoli | Jan 1982 | A |
4344493 | Salmonsen et al. | Aug 1982 | A |
4358009 | Rysti | Nov 1982 | A |
4381582 | Korhonen | May 1983 | A |
4398612 | Mikami et al. | Aug 1983 | A |
4421185 | Koto et al. | Dec 1983 | A |
4428179 | Jordan et al. | Jan 1984 | A |
4442910 | Mikami | Apr 1984 | A |
4483047 | Linville, Jr. | Nov 1984 | A |
4557019 | Van Devanter et al. | Dec 1985 | A |
4561510 | Sugioka et al. | Dec 1985 | A |
4564103 | Sashiki et al. | Jan 1986 | A |
4570831 | Izumi et al. | Feb 1986 | A |
4600096 | Yamano et al. | Jul 1986 | A |
4603768 | Deutschle | Aug 1986 | A |
4615403 | Nakamura | Oct 1986 | A |
4619359 | Kennedy, Jr. et al. | Oct 1986 | A |
4632254 | Scopatz | Dec 1986 | A |
4662508 | Inoue et al. | May 1987 | A |
4681176 | Moran et al. | Jul 1987 | A |
4708215 | Nakamura et al. | Nov 1987 | A |
4720961 | Jordan | Jan 1988 | A |
4748724 | Lapeyre et al. | Jun 1988 | A |
4758778 | Kristinsson | Jul 1988 | A |
4765488 | Moriarity | Aug 1988 | A |
4821820 | Edwards et al. | Apr 1989 | A |
4843561 | Larson | Jun 1989 | A |
4870799 | Bergerioux et al. | Oct 1989 | A |
4874049 | Kee et al. | Oct 1989 | A |
4911281 | Jenkner | Mar 1990 | A |
4962568 | Rudy et al. | Oct 1990 | A |
4963251 | Bohm et al. | Oct 1990 | A |
4970757 | Heiland et al. | Nov 1990 | A |
5054831 | Ting et al. | Oct 1991 | A |
5162016 | Malloy | Nov 1992 | A |
5205779 | O'Brien et al. | Apr 1993 | A |
5247761 | Miles et al. | Sep 1993 | A |
5318173 | Datari | Jun 1994 | A |
5340949 | Fujimura et al. | Aug 1994 | A |
5403056 | Wallace | Apr 1995 | A |
5429223 | Moeller | Jul 1995 | A |
5501313 | Bonnet | Mar 1996 | A |
5613595 | Ukada | Mar 1997 | A |
5626236 | Hiebert | May 1997 | A |
5699896 | Spada et al. | Dec 1997 | A |
5813195 | Nielsen et al. | Sep 1998 | A |
5842306 | Onosaka et al. | Dec 1998 | A |
5957306 | Hoffman | Sep 1999 | A |
5998740 | Kvisgaard et al. | Dec 1999 | A |
6002125 | Schubert | Dec 1999 | A |
6015049 | Heikes | Jan 2000 | A |
6122895 | Schubert | Sep 2000 | A |
6124560 | Roos et al. | Sep 2000 | A |
6126017 | Hours | Oct 2000 | A |
6234300 | De Vos et al. | May 2001 | B1 |
6321135 | Asgeirsson | Nov 2001 | B1 |
6388209 | Gudmundsson | May 2002 | B1 |
6407346 | Baker | Jun 2002 | B1 |
6437256 | Miyamoto | Aug 2002 | B1 |
6444926 | Ricciardi, Sr. | Sep 2002 | B1 |
6493605 | Prideaux et al. | Dec 2002 | B1 |
6640158 | Brandt, Jr. | Oct 2003 | B1 |
6787712 | Asai et al. | Sep 2004 | B2 |
6955031 | Doake et al. | Oct 2005 | B2 |
7057118 | Arnason et al. | Jun 2006 | B2 |
7080739 | Guy et al. | Jul 2006 | B2 |
7240465 | Davi′et al. | Jul 2007 | B2 |
7252584 | Kragh | Aug 2007 | B2 |
7258237 | Nielsen | Aug 2007 | B2 |
7323643 | Hjalmarsson | Jan 2008 | B2 |
7368670 | Hjalmarsson | May 2008 | B2 |
7395934 | Gudjonsson | Jul 2008 | B2 |
7452266 | Bottemiller | Nov 2008 | B2 |
7715935 | Vogeley, Jr. et al. | May 2010 | B2 |
7904198 | Hawes | Mar 2011 | B2 |
7967149 | Helgi | Jun 2011 | B2 |
8158895 | Grundtvig et al. | Apr 2012 | B2 |
8662314 | Jones et al. | Mar 2014 | B2 |
9079223 | Bjornsson et al. | Jul 2015 | B2 |
9095147 | Hjalmarsson et al. | Aug 2015 | B2 |
11259531 | Hjalmarsson et al. | Mar 2022 | B2 |
11344036 | Hjalmarsson et al. | May 2022 | B2 |
11357237 | Hjalmarsson et al. | Jun 2022 | B2 |
20020067797 | Safai et al. | Jun 2002 | A1 |
20020071038 | Mihelcic | Jun 2002 | A1 |
20030052049 | Franci | Mar 2003 | A1 |
20040022930 | Skjervold et al. | Feb 2004 | A1 |
20040231480 | Wattles et al. | Nov 2004 | A1 |
20050032471 | Pfarr et al. | Feb 2005 | A1 |
20050085176 | Houtz | Apr 2005 | A1 |
20050137744 | Winkelmolen et al. | Jun 2005 | A1 |
20050147325 | Chen et al. | Jul 2005 | A1 |
20060161380 | Bottemiller | Jul 2006 | A1 |
20060162515 | Vogeley et al. | Jul 2006 | A1 |
20060182603 | Hawes | Aug 2006 | A1 |
20070039763 | Hjalmarsson | Feb 2007 | A1 |
20070144792 | Hjalmarsson | Jun 2007 | A1 |
20070290516 | Buljo | Dec 2007 | A1 |
20090026119 | Helgi | Jan 2009 | A1 |
20090057098 | Helgi | Mar 2009 | A1 |
20090145670 | Grundtvig et al. | Jun 2009 | A1 |
20090170417 | Janssen et al. | Jul 2009 | A1 |
20090216368 | Thorsson | Aug 2009 | A1 |
20090238670 | Helgi et al. | Sep 2009 | A1 |
20090301940 | Elvarsson et al. | Dec 2009 | A1 |
20100101191 | Lindee | Apr 2010 | A1 |
20120150339 | Bjornsson et al. | Jun 2012 | A1 |
20120307013 | Hjalmarsson et al. | Dec 2012 | A1 |
20130187398 | Cho | Jul 2013 | A1 |
20170028429 | Linares | Feb 2017 | A1 |
20180009105 | Kutsukake et al. | Jan 2018 | A1 |
20180065135 | Linares | Mar 2018 | A1 |
20190000094 | Hjalmarsson et al. | Jan 2019 | A1 |
20190337167 | Clifford et al. | Nov 2019 | A1 |
20200077670 | Hjalmarsson et al. | Mar 2020 | A1 |
20200288731 | Hjalmarsson et al. | Sep 2020 | A1 |
20220061340 | Hjalmarsson et al. | Mar 2022 | A1 |
20220256869 | Hjalmarsson et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
101498601 | Apr 2011 | CN |
3302718 | Sep 1983 | DE |
4413967 | Nov 1994 | DE |
69104122 | Mar 1995 | DE |
20203818 | May 2002 | DE |
202004001567 | Feb 2005 | DE |
102004056031 | May 2006 | DE |
102006061571 | Jul 2008 | DE |
202011110569 | Oct 2014 | DE |
734653 | Oct 1996 | EP |
761322 | Mar 1997 | EP |
1074822 | Feb 2001 | EP |
1687599 | Apr 2007 | EP |
1819994 | Oct 2008 | EP |
1896196 | Dec 2010 | EP |
3178571 | Jun 2017 | EP |
2454338 | Nov 1980 | FR |
2595589 | Sep 1987 | FR |
2744984 | Aug 1997 | FR |
2754239 | Apr 1998 | FR |
242848 | Nov 1925 | GB |
483949 | Apr 1938 | GB |
2116732 | Feb 1986 | GB |
2405081 | Feb 2005 | GB |
2415944 | Jan 2006 | GB |
S6031421 | Feb 1985 | JP |
S62249818 | Oct 1987 | JP |
H07256582 | Oct 1995 | JP |
H0882546 | Mar 1996 | JP |
H09224935 | Feb 1997 | JP |
WO-1989008983 | Oct 1989 | WO |
WO-1993016849 | Sep 1993 | WO |
WO-1995035238 | Dec 1995 | WO |
WO-1996008322 | Mar 1996 | WO |
WO-1999044759 | Sep 1999 | WO |
WO-2000022934 | Apr 2000 | WO |
WO-2000023771 | Apr 2000 | WO |
WO-2000023772 | Apr 2000 | WO |
WO-2001007324 | Feb 2001 | WO |
WO-2001010574 | Feb 2001 | WO |
WO-2001022043 | Mar 2001 | WO |
WO-2001027567 | Apr 2001 | WO |
WO-2002043502 | Jun 2002 | WO |
WO-2003008917 | Jan 2003 | WO |
WO-2003069285 | Aug 2003 | WO |
WO-2004090481 | Oct 2004 | WO |
WO-2005051812 | Jun 2005 | WO |
WO-2005062994 | Jul 2005 | WO |
WO-2005085776 | Sep 2005 | WO |
WO-2005095904 | Oct 2005 | WO |
WO-2005102620 | Nov 2005 | WO |
WO-2006064521 | Jun 2006 | WO |
WO-2006092311 | Sep 2006 | WO |
WO-2006106532 | Oct 2006 | WO |
WO-2007022782 | Mar 2007 | WO |
WO-2007083327 | Jul 2007 | WO |
WO-2007134603 | Nov 2007 | WO |
WO-2008095500 | Aug 2008 | WO |
WO-2016139611 | Sep 2016 | WO |
WO-2019058262 | Mar 2019 | WO |
WO-2020053310 | Mar 2020 | WO |
WO-2020225364 | Nov 2020 | WO |
Entry |
---|
Certified priority document of International Patent Application No. PCT/IS2006/000008 internationally filed Apr. 4, 2006, 12 pages. |
Extended European Search Report for European Patent Application No. EP 1000150.9, completed on Jul. 28, 2010, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/IB2016/051192, dated Sep. 14, 2017, 11 pages. |
International Search Report and Written Opinion for International application No. PCT/EP2019/074281 filed Feb. 17, 2020, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/EP2020/062716, dated Jul. 21, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/IB2016/051192, dated Sep. 12, 2016, 16 pages. |
International Search Report and Written Opinion for International Application No. PCT/IB2018/057196, dated Jan. 7, 2019, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/IS2004/000014, dated Nov. 18, 20004, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/IS2005/000006, dated Jun. 15, 2005, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/IS2007/000003, dated Sep. 11, 2007, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/IS2007/000004, dated Sep. 13, 2007, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/IS2007/000013, dated Nov. 30, 2007, 10 pages. |
International Search Report for International Application No. PCT/IB2010/002109, dated Nov. 30, 2010, 4 pages. |
International Search Report for PCT/IS2011/000001, Completed by the European Patent Office dated Jun. 27, 2011, 2 Pages. |
U.S. Unpublished U.S. Appl. No. 17/275,599, filed Mar. 11, 2021 titled “Apparatus for Processing and Grading Food Articles and Related Methods,” (Copy not submitted herewith pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(iii)). |
U.S. Unpublished U.S. Appl. No. 17/578,355, filed Jan. 18, 2022 titled “Apparatus for Processing and Grading Food Articles and Related Methods,” (Copy not submitted herewith pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(iii)). |
Number | Date | Country | |
---|---|---|---|
20220250856 A1 | Aug 2022 | US |