The present invention generally relates to the field of frozen food products, and more particularly to an apparatus for storing and preparing food.
As contemporary society progresses, people spend less time preparing and consuming meals. Fast food provides one option for those who want their meal in a short time ready for consumption; however, many people no longer desire fast food or can not eat it, due to its lack of nutrition and in particular, its high calorie, salt, and fat content.
Prepared foods, such as those appearing in supermarkets, take-out establishments, and the like, while appearing to be home cooked, are typically expensive. Additionally, like fast food, these prepared foods lack nutritional value, and are usually high in calories, salt, and fat. Accordingly, both fast food and prepared foods do not appeal to health conscious consumers.
Health conscious consumers have found some suitability in frozen meals and prepackaged meals, such as those that can be heated in a microwave oven; however, these frozen meals typically mix together all of their contents. Accordingly, when cooked or reheated, some of the contents may be undercooked, while some of the contents may be overcooked. Similarly, room temperature prepackaged meals may suffer partial degradation and discoloration of the components while in storage, and when heated in a microwave oven, the components may also cook unevenly.
To address some of the problems of intermixed frozen meals, a food container for use in a microwave with an internal separator dividing the container into upper and lower compartments was developed. The upper compartment is configured for a food product and the lower for a water or water-containing medium. The separator is a thin perforated sheet that is designed to snap into place with evenly spaced internal lugs. When the food container is placed in the microwave and heated the steam created by the water medium passes through the separator to steam the product. The problem with this food container is that the separator is configured to latch into place for use with the container, thereby inhibiting the availability of the water-containing medium after the food product is steamed.
Therefore a need still exists for an ovenable cooking apparatus that facilitates improved cooking of a food product in microwave ovens, conventional ovens, combination ovens and all other typical cooking apparatuses which separates the food product from the sauce or liquid and allows the consumer to easily access the food product and sauce after cooking.
There exists a similar need for improvements in the food service industry. The food service industry currently prepares food in commercial settings using foodservice tray pans that include a mixture of food ingredients. Typically, the food comprises a frozen mass of ingredients such as starch, protein, vegetables, and sauce. To prepare and serve the food, the frozen foodservice tray is heated in an oven, commercial oven, convection oven, combination oven, microwave oven, steam cooker, or the like. Because the food ingredients are frozen in a large mass, the heating times can be from one to two hours or more. The quality of the food using this method may sometimes be undesirable, resulting in overcooked or undercooked ingredients, variation in food texture, or discoloration of the food ingredients. Further, consumers cannot plate their meals according to their individual tastes because all the ingredients are mixed together. The current method is also incompatible with breaded ingredients because they come out soggy and do not meet consumer approval.
Accordingly, it would be desirable to provide a method and apparatus for preparing food in the commercial food sector that is more efficient and produces higher quality food products.
The present invention improves on the contemporary art by providing an ovenable cooking apparatus for any typical cooking apparatus (including but not limited to microwave ovens, combination ovens, conventional ovens, steamers, and the like) that has separate compartments for different foods or food components. These separate compartments are such that food components are kept separate during storage, prior to cooking or heating, (cooking and heating hereinafter, referred to collectively as “cooking”, and all variations thereof), as well as during cooking. This arrangement prevents unwanted mixing of the food components. As a result, the food components in the second or upper compartment maintain their integrity and do not degrade or discolor as a result of having contacted the food components in the first or tower compartment. Accordingly, the invention is operable with sauces or liquids in one compartment, separate from components such as proteins and/or starches, in a separate compartment.
These separate compartments also facilitate cooking of the proteins and/or starches in a second or upper compartment with the steam generated by heating the sauce or liquid food component in the first or lower compartment when the upper compartment is perforated. By separating the proteins and/or starches from the sauce, the food product remains crispier and develops a mouth feet similar to traditionally steamed proteins and/or starches. When using a solid upper compartment it allows the cooking, browning, and crisping of breaded items white cooking the sauce at the same time. In addition, as the food components in each of the compartments cook simultaneously, they are ready for consumption in a shorter time than had the meat been prepared in a non-microwave oven, or the food components were prepared separately.
Additionally, the compartments are designed such after the product is cooked, the upper compartment can be easily removed from the lower compartment. As such, the consumer may eat the steamed starch and/or protein product, of the upper compartment, by itself or may choose to add the heated sauce, of the lower compartment, onto the steamed starch and/or protein.
The ovenable cooking apparatus includes upper and lower compartments for food components. These compartments are arranged such that the food component in the upper compartment may be cooked by steaming when the upper compartment is perforated. The steam is generated upon heating the food component in the lower compartment until at least a portion of the food component boils. The generated steam then enters the upper compartment through openings in the base and side walls of the upper compartment. Food components cooked by steam are typically healthier, and typically include, starches and proteins, such as rice, vegetables, shrimp, meat, and the like. Accordingly, the apparatus is suitable for storing and cooking healthy and nutritious meals. Depending on the materials of construction these meals may be cooked in a microwave oven in a short time, as compared to preparing the same meal conventionally. These meals may also be cooked in a conventional oven, combination oven, steam cooker, or other common cooking apparatus. When the upper compartment is perforated the food product is cooked with steam improvements, when the upper compartment is solid the food products re baked.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
The present invention relates to an ovenable cooking or heating (cooking and heating, and variations thereof, collectively known as “cooking”, as detailed above) apparatus, for use with conventional, convection, combination, or microwave ovens. The apparatus has separate compartments for different foods or food components, such that the separateness and integrity of each food type is maintained from processing (filling and packaging) through storage and cooking. In particular, the second or upper compartment is received by the first or lower compartment such that after the food product is heated, the compartments may be easily separated. The apparatus may also include a sheet of barrier material sealing the combined compartments and food products.
As the apparatus is heated, at least a portion of the first food component in the first or lower compartment boils producing steam. The steam is utilized to cook the second food component in the upper compartment. In one embodiment, the second compartment is steam impermeable. In another embodiment, the steam rises into the second or upper compartment thereby steam cooking the second food component. The second or upper compartment includes a plurality of openings 238 that allow the steam to pass from the first and lower compartment into the second or upper compartment. The sheet of barrier material ensures that the food product is cooked uniformly by preventing the steam from escaping the compartments or dissipating into the atmosphere during cooking. Although, the apparatus is designed such that the foods or food components in each of the compartments cook simultaneously, as the compartments are easily separated, the consumer may choose to consume the steamed second food product by itself or in combination with the first food component.
Throughout this document there are references to directions and positions. These directional and positional references are to the apparatus of the invention in typical orientations. The references include, for example, upper, lower, top, bottom, above, below, and are exemplary only. They are not limiting in any way, as they are for description and explanation purposes.
The container 22 holds a first food component, such as, liquids, gels, partially liquid or gelatinous mixtures, and mixtures thereof. Examples of the first food component include a sauce, gravy, water, and meat and/or vegetables in a sauce or gravy. The basket 24, is received and held by the container 22, and is in coaxial alignment with the container 22. The basket 24 typically holds a solid food component, such as starches and/or proteins, such as rice, grains, and pasta, vegetables, or other particulate foods, that are typically steam cooked. Accordingly, the basket 24 includes openings 70 in its base 63 and its sidewalls 64, that allow steam, generated by the cooking of the first component, to enter the basket 24, and cook the second food component. The openings 70 are also dimensioned to allow liquids, such as water and the like, generated in the upper compartment during cooking, to drain into the container 22.
As shown in detail in
The container's 22 sidewalls 34 include a shelf portion 38 within its cavity 32. The shelf portion 38 extends along the sidewall 34 and is typically continuous. The sidewalls 34 typically include at least a portion that tapers outwardly, with the entire sidewall 34 typically tapering outwardly from the base 33 to a rim 36, at the opening of cavity 32. The shelf portion 38 provides support for the basket 24 and ensures that the base 63 of the basket 24 is not in direct contact with the base 33 of the container 22 (as shown in
As shown in
As shown in detail in
The sidewalls 64 typically include at least a portion that tapers outward, with the entire sidewall 64 typically tapering outward from the base 63, to a rim 66, at the opening of the cavity 62. The sidewalls 64 and rim 66 typically include arcs 68, that are typically rounded inward, into the cavity 62. The arcs 68, are approximately oppositely disposed with respect to each other, and when the basket 24 sits in the container 22, serve as vents for steam, generated in the cavity 32 of the container 22 during cooking. The arcs 68 also provide sufficient portions for manually gripping the basket 24, for its removal from the container 22.
The basket 24 includes a plurality of openings 70. The openings 70 are perforations or bores 72 that extend through the base 63 and through the sidewalls 64. The bores 72 may be of any size or dimension so as to allow steam to pass from the cavity 32 of the container 22 into the basket 24, in order to steam heat (or steam cook) the contents (e.g., the second food component) stored in the cavity 62 of the basket 24, as well as allowing liquid (typically water) to pass from the basket 24 into the container 22. Moreover, the openings 70 are also dimensioned to keep particulate foods, such as rice and the like, including particles thereof, from dropping out of the basket 24 and into the cavity 32 of the container 22. Suitable bore shapes include small, circular, rounded, or oval cylindrical bores, but are not limited thereto.
The openings 70 at the base 63 and sidewalls 64 may be arranged in any desired pattern, provided sufficient amounts of steam are able to reach the basket 24 and there are sufficient openings 70 to allow for the passage of liquid from the basket 24 to the container 22. For example, the openings 70 at the base 63 may be arranged in a series of concentric circles. The openings 70 at the sidewalls 64 may be arranged in a line. Typically, one or more lines of openings 70 may be included in the sidewalls 64 of the basket 24. If a second line of openings 70 is arranged at the sidewalls 64, the second line of openings 70 may be offset with the first line of openings, such that the cylindrical bores 72 of the second line are not directly below the cylindrical bores 72 of the first line.
The body 60, is constructed, such that when the basket 24 is removably received by the container 22, there is sufficient space in the cavity 32 of the container 22, between the base 33 of the container 22 and the base 63 of the basket 24, to accommodate a first food component in both dry or frozen (storage) and cooking (heated) states, without disrupting the seating of the basket 24 in the container 22. Additionally, the body 60 is such that the basket 24 is adequately supported in the container, for example, by the shelf portions 38 (
The basket 24′, like basket 24, is substantially circular in shape, and designed to sit in the container 22, as detailed above. The basket 24′ differs from basket 24, in that the openings 70 may be slits 90, rather than circular, rounded, or oval cylindrical bores 72 as in basket 24. Like the cylindrical bores 72, the slits 90 are dimensioned to facilitate the passage of steam, generated by cooking of the first food component, to enter the basket 24′. The dimensioning of the slits 90 also facilitates the passage of liquid, for example, water, from the basket 24′ to the container 22. This dimensioning keeps particulate foods, such as rice and the like, including particles thereof, from dropping out of the basket 24′ and into the cavity 32 of the container 22.
The slits 90 are typically rectangular in shape, and extend through the base 63′. They are typically arranged in a parallel alignment with respect to each other. The slits 90 are typically oriented perpendicular to the longitudinal axis MM of the base 63′. Alternatively, the slits 90 may also be oriented parallel to the longitudinal axis MM of the base 63′.
As stated above, the apparatus of the present invention may be of any desired shape. As shown in
As shown in
As shown in
The outer side 160b of the body 160, may include protrusion segments 174. These protrusion segments 174 allow for ease of use in manually gripping the basket 124.
The basket 124″, like basket 124, is substantially oval in shape, and designed to sit in the container 122, as detailed above. The basket 124″ differs from basket 124, in that the openings 170 may be slits 190.
The slits 190 are similar in construction and function to the slits 90 of the basket 24, as detailed above. The slits 190 are cut into and extend through the base 163″ of the body 160″. They are typically arranged in a parallel alignment with respect to each other. The slits 190 are typically oriented perpendicular to the longitudinal axis LL of the base 163″. Alternatively, the slits 90 may also be oriented parallel to the longitudinal axis LL of the base 163″.
The containers 22,122 and baskets 24, 24′,124, 124′, 124″ are, for example, made of polymers, such as Polypropylene (PP) (e.g., Co-polymer Polypropylene), Crystallized Polyethylene Terepthalate (CPET), or any other microwave and food safe non-toxic material. The containers 22,122 and baskets 24, 24′,124,124′, 124″ are, for example, formed by conventional polymer forming and working techniques. Suitable forming and working techniques include injection molding, rotational molding, and the like, as well as thermoforming. The containers 22, 122 and baskets 24, 24′,124, 124′,124″ are suitable for refrigerated storage, freezer storage, and subsequent heating without substantial deformation.
The apparatuses 20,120, in particular, the containers 22,122 and baskets 24, 24′,124,124′, 124″ are typically of dimensions to ensure that during the cooking process the second food component is uniformly steam cooked. In addition, the apparatuses 20, 120, in particular, the containers 22,122 and baskets 24, 24′,124, 124′, 124″ are of dimensions to fit within a typical consumer, or alternatively, food service microwave oven, with sufficient space remaining. For example, the containers 22 and 122 may be of circular shape and with a diameter of from about 4 to about 12 inches. Alternatively, the containers 22 and 122 may be of rectangular shape, with dimensions of from about 3 to about 6 inches in width to about 7 to about 12 inches in length. In addition, the containers 22 and 122 may include 1 to 6 servings, preferably 2 to 4 servings. Other dimensioning and/or shapes for the apparatuses 20,120, containers 22, 122 and baskets 24, 24′, 124, 124′, 124″ are also possible, to accommodate different packages, cartons, or sleeves, that hold the apparatus prior to its use, as well as the internal cooking chambers of microwave ovens, high energy cooking apparatus, and the like. Similarly, other serving sizes are also possible to accommodate consumer demand.
The apparatuses 20,120 are such that they may be covered by a sheet of barrier material (e.g., transparent, translucent, or opaque) continuously sealed to the rim 36 of the containers 22 and 122, but also could be sealed to the rim 66, 166 of the baskets 24, 24′,124, 124′, 124″. This sheet of barrier material is made of a material that is suitable to withstand oven temperatures during cooking and is moisture-impervious. Suitable materials include polymers, such as polypropylene and polyethylene, among others. The sheet of barrier material is sealed to the rim using any method generally known in the art The sheet of barrier material is sealed to the rim to prevent substantial bulging or expansion of the sheet material during the cooking process. In particular, the seal is such as to allow the release of some pressure build up inside the container while maintaining uniform heating and cooking of the food products therein.
In an alternative embodiment, the ovenable cooking apparatus 220 is suitable for use in commercial foodservice applications.
In an exemplary embodiment of the invention, the ovenable cooking apparatus 220 includes a passage for providing airflow and steamflow for cooking the second food component 236. These passages may be defined by the basket 222 and the container 224, and allow an area through which steam may pass to transfer heat and/or steam to the second food component 236. In one embodiment, the passage is defined between the bottom or base 240 of the basket 222 and the top surface of the second food component 236. Cooking the liquid-based second food component 236 generates steam, which may travel across this passage to contact the basket 222 and heat or steam the second food component 236. In the methods illustrated in
The footed basket 244 is depicted in
Employment of the footed basket 244 may provide sufficient support to the basket 222 so that rolled edges 226, 230 are not required suspend the basket 222 above the first food component 234. This can provide certain manufacturing advantages, as modifications to the edge crimper which typically forms the rolled edges, would not be required. The footed basket 222 can be manufactured using a thermoform process, aluminum press, or other method known in the art.
An alternative embodiment of the ovenable cooking apparatus 220 is depicted in
In another embodiment, the basket 222 is steam impermeable. Suitable materials include polymers, such as polypropylene and polyethylene, among others. For example, the basket may be formed from one continuous material, such as a continuous sheet of metal or the like. The basket 222 may be utilized for cooking foods that need to be separated from the steam produced by the first food component. In one specific embodiment, the basket 222 may be utilized for cooking a foodstuff such as bread, or the like. It will be appreciated that other foodstuffs may be cooked in the basket 222 and separated from steam generated by the first food component without departing from the scope and spirit of the present invention.
In one embodiment, the basket 222 may be of a generally rectangular shape as described previously and include indentations 248 in the side walls 250 of the basket 222. For example, in one embodiment the basket 222 includes two indented side walls along the length of the basket 222. In another embodiment, the basket 222 includes indentations 248 along both the length of the basket 222 and along the width of the basket 222.
The ovenable cooking apparatus 220 of the present embodiment also includes a container 224. The container 224 is dimensioned to define the passage and provide gaps 254 between the edge/rim of the container 224 and the rim/edge of the basket 222. These gaps 254 provide steam flow and airflow to heat the second food component 236. It will be appreciated that the lid 225 for the ovenable cooking apparatus 220 may be separated form the lip of the basket 222 to allow steam to move from the passage to the second food component 236.
The embodiments depicted in
The embodiments depicted in
The ovenable cooking apparatus 220 described in
An alternative embodiment of the invention is depicted in
The wok-shaped basket 256 is depicted in
The container 224 of the embodiment depicted in
An alternative embodiment of the ovenable cooking apparatus 220 is depicted in
As depicted in
In a further embodiment, depicted in
An alternative embodiment of the ovenable cooking apparatus 220 is depicted in
In one embodiment, the ovenable cooking apparatus 220 includes a container 224 with a first basket 222 and a second basket. The container 224 holds a first food component 234, the first basket 222 holds a second food component 236 and the second basket may hold a second food component 236 or a third food component. The first basket 222 and the second basket may employ any of the features described previously, including openings 238, handles, or foot members 246. The first basket 222 and the second basket may have different characteristics, particularly if they are used to hold different food components. For example, the first basket 222 may include openings 238 to provide extra drainage and steam flow to a second food component 236, while the second basket may not include openings 238. In another embodiment, the container 224 and baskets may be dimensioned to allow several baskets to be nested within a single container 224.
The ovenable cooking apparatus 220 may be used according to a number of methods. In one method, the container 224 containing the first food component 234 and the basket 222 containing a second food component 236 are packaged and sold together. The basket 222 and the container 224 may be packaged in a nested fashion for efficiency, but prepared separately. For instance, a user may be instructed to heat the container 224 and the basket 222 separately instead of in a nested fashion to prepare the food components. In an alternative embodiment, the ovenable cooking apparatus 220 may include a container 224 containing a first food component 234 and a basket 222 containing a second food component 236, as well as a second basket containing a third food component. The first and second baskets may be nested in the container 224 during transport and sale, and during preparation a user may separate the second basket and cook it separately while leaving the first basket and the container 224 to cook in a nested fashion.
The materials used to construct the basket 222 and the container 224 may depend on the cooking mechanism, the type of food, cost, and other factors. The materials may include all the aforementioned materials (PP<CPET, APET, Nylon, Aluminum, etc.), and others such as pressed paperboard, molded pulp, or the like. It may also be possible to construct the basket 222 from one material and the container 224 from another. For instance, the basket 222 may be constructed of polypropylene (PP) and the container 224 may be constructed of Crystallized Polyethylene Terepthalate (CPET).
It is believed that the invention may be further understood by the following examples, which are not limiting in any way.
Two samples of Chicken Primavera were prepared under the same conditions to look for improvement in food quality and cook times. The first sample was prepared according to current methods using an aluminum tray and a frozen block of the Chicken Primavera with all ingredients mixed together. The second sample was prepared using a foodservice compatible embodiment of the ovenable cooking apparatus 220, which included an aluminum basket 222 with openings 238 nested within an aluminum container 224. The container 224 included a medium depth tray pan and contained sauce. The basket 222 was a shallow tray pan with between 20 and 40 oval shaped openings 238 approximately 1″ long. The basket 222 was nested within the container 224 and contained vegetables and proteins. The size of the basket 222, container 224, and the amount of sauce allowed for an air gap between the base 240 of the basket 222 and the sauce.
Significant improvements were observed in comparisons between the conventional method and the ovenable cooking apparatus 220. The sample prepared using the ovenable cooking apparatus 220 resulted in huge improvements in product quality, including improved sauce color and improved vegetable texture, color, and flavor.
Two samples of Beef Stew were prepared under the same conditions to look for improvement in food quality and hold life. The first sample was prepared according to current methods using an aluminum tray and a frozen block of the Beef Stew with all ingredients mixed together. The second sample was prepared using a foodservice compatible embodiment of the ovenable cooking apparatus 220, which included an aluminum basket 222 with openings 238 nested within an aluminum container 224. The container 224 included a medium depth tray pan and contained sauce. The basket 222 was a shallow tray pan with between 20 and 40 oval shaped openings 238 approximately 1″ long. The basket 222 was nested within the container 224 and contained vegetables and proteins. The size of the basket 222, container 224, and the amount of sauce allowed for an air gap between the base 240 of the basket 222 and the sauce. The products were sampled after preparation, 30 minutes later, 60 minutes later, and 90 minutes later to compare their quality under conditions where they are kept warm for serving after being cooked (their hold life).
Significant improvements were observed in comparisons between the conventional method and the ovenable cooking apparatus 220. The sample prepared using the ovenable cooking apparatus 220 resulted in huge improvements in product quality, including improved sauce color and impoved vegetable texture, color, and flavor. The potatoes and carrots prepared using the ovenable cooking apparatus 220 were significantly better than the ptoates and carrots prepared using conventional methods. The beef also showed superior quality over time compared to the beef that was prepared conventionally.
A first sample of chicken parmigiana was prepared according to the conventional method, which included a frozen block of all ingredients in a foodservice tray. A second sample of chicken parmigiana was prepared using the ovenable cooking apparatus. The sauce was placed in the container and the chicken parmigiana and pasta were placed in the basket and cooked. The basket did not include openings for steam to enter the basket.
There were significant improvements in the sample prepared using the ovenable cooking apparatus. The chicken from the first sample was soggy and did not meet consumer standards. The chicken from the ovenable cooking apparatus had the appropriate crispy texture. The pasta also had improved texture and flavor.
Tandoori Chicken was prepared using the ovenable cooking apparatus 220, which included an aluminum basket 222 nested within an aluminum container 224. The basket 222 did not include perforations. The basket 222 contained 30 ounces of minted couscous with garbanzo beans. The container 224 contained 25 ounces of curry sauce and 30 ounces of Tandoori chicken breast in 1″ chunks.
Significant improvements were observed compared to Tandoori Chicken prepared using a single tray and a frozen block of all Tandoori Chicken ingredients mixed together. There were particular improvements to sauce color and vegetable texture, color, and flavor.
Jerk Chicken was prepared using the ovenable cooking apparatus 220, which included an aluminum basket 222 nested within an aluminum container 224. The basket 222 did not include perforations. The basket 222 contained 30 ounces of protein and 30 ounces of white rice. The container 224 contained 40 ounces of black beans and sauce.
Significant improvements were observed compared to Jerk Chicken prepared using a single tray and a frozen block of all the Jerk Chicken ingredients mixed together. There were particular improvements to sauce color and vegetable texture, color, and flavor.
Chicken Milanese was prepared using the ovenable cooking apparatus 220, which included an aluminum basket 222 and an aluminum container 224.
The basket 222 did not include perforations. The basket 222 contained 20ounces of Chicken Milanese, which included 10 chicken breast tenders. The container 224 contained 20 ounces of broccoli rabe and 30 ounces of mushroom risotto. The container 224 was covered and steamed for 1 hour. The chicken Milanese in the basket was reheated in a 350 degree oven for 15 minutes.
Significant improvements were observed compared to chicken Milanese prepared using a single tray and a frozen block of all the chicken milanese ingredients mixed together. There were particular improvements to sauce color and vegetable texture, color, and flavor.
Vegetarian Pad Thai was prepared using the ovenable cooking apparatus 220, which included an aluminum basket 222 and an aluminum container 224. The basket 222 did not include perforations. The basket 222 contained 30 ounces of rice flour vermicelli and 12 ounces of vegetables, including julienne carrots, bean sprouts, and green onions. The container 224 contained 30 ounces of sietan (wheat gluten) and 25 ounces of Pad Thai sauce. The container 224 was covered and steamed for 1 hour. The basket was covered and steamed for 20 minutes.
Significant improvements were observed compared to Vegetarian Pad Thai prepared using a single tray and a frozen block without separating the ingredients. There were particular improvements to vegetable texture, color, and flavor, as well as sauce color.
A Dim Sum Party Pack was prepared using the ovenable cooking apparatus 220, which included an aluminum basket 222 and an aluminum container 224. The basket 222 did not include perforations. The basket 222 contained 6 boa buns with asian barbeque pork, 6 LaChoy Chicken Potstickers, and 6steamed vegetable spring rolls. The container 224 contained 12 ounces of teriyaki sauce. The container 224 was heated for 15 minutes in a 350 degree oven while covered. The basket was steamed uncovered for 10 minutes.
The Dim Sum Party Pack was not compared to a Dim Sum Party Pack prepared using the conventional single tray method because this type of meal is cannot be prepared according to traditional methods due to the breaded ingredients. However, use of the ovenable cooking apparatus 220 to prepare the Dim Sum Party Pack resulted in a very high quality result, with no sogginess in the breaded ingredients.
The current invention provides numerous advantages over prior art. First, use of the container to hold the first food component and the basket to hold the second food component provides separation of the food ingredients during cooking. This may lead to significant improvements in food quality, including improvement in texture, hold life, color, and flavor. Separation of the food ingredients also provides enhanced control of the moisture levels and ultimately, the quality of the food ingredients. In one example, individually quick frozen (IQF) foods may be placed in the basket and are separated from other food ingredients. As the IQF foods thaw, moisture can drain from the basket into the container. This keeps the IQF foods from becoming soggy from excess moisture, and also ensures that the other food ingredients in the container do not dry out.
Second, the current invention allows the introduction of new food items into the foodservice industry. Currently, breaded items may not meet consumer standards when prepared in foodservice trays that do not provide separation of ingredients. By placing breaded items in the basket of the ovenable cooking apparatus, they may come out crispy instead of soggy. This will open up a plethora of new food items for the foodservice industry without excessive changes to current methods.
Third, the current invention may also provide significant thermodynamic and heat transfer advantages. Separating the food ingredients increases the surface area to volume ratio, which increases the surface area to which heat may be transferred. This may result in greater efficiency in cooking.
Fourth, the ovenable cooking apparatus is largely compatible with existing methods of meal preparation in the foodservice industry. By nesting the basket in the container during packaging and cooking, there is no need for additional oven space to prepare the meal.
Last, the ovenable cooking apparatus allows users to plate, assemble, and customize their meal according to their preferences and taste. The presentation of the meal is more attractive and appealing when consumers can choose how to place each component and how much of each food ingredient they would like to put on their plate. By keeping the food components separate during cooking, the ingredients don't intermix and consumers can customize their meals with varying amounts of ingredients.
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes.
While preferred embodiments of the present invention have been described, so as to enable one of skill in the art to practice the present invention, the preceding description is intended to be exemplary only. It should not be used to limit the scope of the invention, which should be determined by reference to the following claims.
Application Ser. No. 11/703,066 is a continuation-in-part of U.S. patent application Ser. No. 11/423,259, filed Jun. 9, 2006, entitled “STEAM COOKING APPARATUS,” now pending. U.S. patent application Ser. No. 11/423,259 claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/728,468, filed Oct. 20, 2005, entitled “STEAM COOKING PACKAGING.” The present application herein incorporates U.S. patent application Ser. Nos. 11/703,066 and 11/423,259 and U.S. Provisional Application Ser. No. 60/728,468 by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
113893 | Joyce et al. | Apr 1871 | A |
166102 | Hennaman | Jul 1875 | A |
177593 | Van Skelline | May 1876 | A |
181823 | Cornwall | Sep 1876 | A |
241254 | Udell | May 1881 | A |
254770 | Hurd | Mar 1882 | A |
472002 | Ross et al. | Mar 1892 | A |
541397 | Swartout | Jun 1895 | A |
590212 | Daesch | Sep 1897 | A |
637838 | Vernon | Nov 1899 | A |
851983 | Entringer | Apr 1907 | A |
899244 | Chase | Sep 1908 | A |
902181 | Tidow | Oct 1908 | A |
948198 | Wiegand | Feb 1910 | A |
952572 | Meyer | Mar 1910 | A |
955033 | Wing | Apr 1910 | A |
1004423 | Hanlon | Sep 1911 | A |
1099603 | Ingersoll | Jun 1914 | A |
1263004 | Tollagsen | Apr 1918 | A |
1341960 | Meyer et al. | Jun 1920 | A |
1347428 | Wittekind | Jul 1920 | A |
1476910 | Naugle | Dec 1923 | A |
1519510 | Santarsiero | Dec 1924 | A |
1630787 | Cullen | May 1927 | A |
1765862 | Clapp | Jun 1930 | A |
1864081 | Marr | Jun 1932 | A |
1906592 | Hiester | May 1933 | A |
1944089 | Litchfield | Jan 1934 | A |
1985978 | Thomas | May 1934 | A |
2021465 | Ritscher | Nov 1935 | A |
2039374 | Young | May 1936 | A |
2041227 | Chalmers | May 1936 | A |
2107480 | Holton | Jan 1938 | A |
2149872 | Schmidt | Mar 1939 | A |
2200977 | Baxter | May 1940 | A |
2271921 | Luker | Feb 1942 | A |
2290396 | Webster | Jul 1942 | A |
2540036 | Spencer | Jan 1951 | A |
2556115 | Smith | Jun 1951 | A |
2559101 | Wool | Jul 1951 | A |
2576862 | Smith et al. | Nov 1951 | A |
2591578 | McNealy et al. | Apr 1952 | A |
2600566 | Moffett | Jun 1952 | A |
2650485 | La Greca | Sep 1953 | A |
2660529 | Bloom | Nov 1953 | A |
2667422 | Kauffman | Jan 1954 | A |
2673805 | Colman | Mar 1954 | A |
2673806 | Colman | Mar 1954 | A |
2714070 | Welch | Jul 1955 | A |
2741559 | Banowitz | Apr 1956 | A |
2777769 | Hiram | Jan 1957 | A |
2801930 | Jeno | Aug 1957 | A |
2805392 | Schnoll | Sep 1957 | A |
2852898 | Berg | Sep 1958 | A |
2858970 | Barnes et al. | Nov 1958 | A |
2865768 | Barnes et al. | Dec 1958 | A |
D185399 | Tupper | Jun 1959 | S |
2960218 | Cheeley | Nov 1960 | A |
2961520 | Long | Nov 1960 | A |
2965501 | Harriss | Dec 1960 | A |
3012895 | Stelnicki | Dec 1961 | A |
3027261 | Samara | Mar 1962 | A |
3035754 | Meister | May 1962 | A |
3052554 | Colman | Sep 1962 | A |
3068779 | Eidlisz | Dec 1962 | A |
3070275 | Bostrom | Dec 1962 | A |
3107989 | Fesco | Oct 1963 | A |
3109359 | Falla | Nov 1963 | A |
3141400 | Powers | Jul 1964 | A |
3179036 | Luker | Apr 1965 | A |
3191520 | Halter | Jun 1965 | A |
3219460 | Brown | Nov 1965 | A |
3220635 | Kasting et al. | Nov 1965 | A |
3220856 | Vischer | Nov 1965 | A |
3240610 | Cease | Mar 1966 | A |
3244537 | Cease | Apr 1966 | A |
3246446 | Powers | Apr 1966 | A |
3262668 | Luker | Jul 1966 | A |
3271169 | Baker et al. | Sep 1966 | A |
3286832 | Pilger | Nov 1966 | A |
3287140 | Brussell | Nov 1966 | A |
3293048 | Kitterman | Dec 1966 | A |
3326097 | Lokey | Jun 1967 | A |
3349941 | Wanderer | Oct 1967 | A |
3353327 | Cutler et al. | Nov 1967 | A |
3353707 | Eyles | Nov 1967 | A |
3357152 | Geigel | Dec 1967 | A |
3396868 | Fitzgerald | Aug 1968 | A |
3420397 | Miller | Jan 1969 | A |
3421654 | Hexel | Jan 1969 | A |
3424342 | Scopp et al. | Jan 1969 | A |
3445050 | Peters et al. | May 1969 | A |
3447714 | Elliot | Jun 1969 | A |
3489075 | O'Reilly | Jan 1970 | A |
3521788 | Carter et al. | Jul 1970 | A |
3547661 | Stevenson | Dec 1970 | A |
3608770 | Naimoli | Sep 1971 | A |
3610135 | Sheridan | Oct 1971 | A |
3610458 | Nissley | Oct 1971 | A |
3615646 | Neely et al. | Oct 1971 | A |
3620834 | Duffy | Nov 1971 | A |
3637132 | Gray | Jan 1972 | A |
3638784 | Bodolay et al. | Feb 1972 | A |
3641926 | Williams et al. | Feb 1972 | A |
3647508 | Gorrell | Mar 1972 | A |
3669688 | Thompson | Jun 1972 | A |
3718480 | Tremblay et al. | Feb 1973 | A |
3741427 | Doyle | Jun 1973 | A |
3777447 | Herbine et al. | Dec 1973 | A |
3811374 | Mann | May 1974 | A |
3835280 | Gades et al. | Sep 1974 | A |
3836042 | Petitto | Sep 1974 | A |
3844409 | Bodolay et al. | Oct 1974 | A |
3851574 | Katz et al. | Dec 1974 | A |
3865301 | Pothier et al. | Feb 1975 | A |
3873735 | Chalin et al. | Mar 1975 | A |
3881027 | Levinson | Apr 1975 | A |
3884213 | Smith | May 1975 | A |
3884383 | Burch et al. | May 1975 | A |
3893567 | Davis et al. | Jul 1975 | A |
3908029 | Fredrickson | Sep 1975 | A |
3908111 | Du Bois et al. | Sep 1975 | A |
3938730 | Detzel et al. | Feb 1976 | A |
3941967 | Sumi et al. | Mar 1976 | A |
3956866 | Lattur | May 1976 | A |
3965323 | Forker, Jr. et al. | Jun 1976 | A |
3970241 | Hanson | Jul 1976 | A |
3973045 | Brandberg et al. | Aug 1976 | A |
3974353 | Goltsos | Aug 1976 | A |
3975552 | Stangroom | Aug 1976 | A |
3983256 | Norris et al. | Sep 1976 | A |
3985990 | Levinson | Oct 1976 | A |
4018355 | Ando | Apr 1977 | A |
4031261 | Durst | Jun 1977 | A |
4036423 | Gordon | Jul 1977 | A |
4038425 | Brandberg et al. | Jul 1977 | A |
4043098 | Putnam, Jr. et al. | Aug 1977 | A |
4065583 | Ahlgren | Dec 1977 | A |
4077853 | Coll-Palagos | Mar 1978 | A |
4079853 | Casutt | Mar 1978 | A |
4082184 | Hammer | Apr 1978 | A |
4082691 | Berger | Apr 1978 | A |
4096948 | Kuchenbecker | Jun 1978 | A |
4113095 | Dietz et al. | Sep 1978 | A |
4118913 | Putnam, Jr. et al. | Oct 1978 | A |
4126945 | Manser et al. | Nov 1978 | A |
4132811 | Standing et al. | Jan 1979 | A |
4133896 | Standing et al. | Jan 1979 | A |
4136505 | Putnam, Jr. et al. | Jan 1979 | A |
4138054 | Spencer | Feb 1979 | A |
4140889 | Mason et al. | Feb 1979 | A |
4154860 | Daswick | May 1979 | A |
4156806 | Teich et al. | May 1979 | A |
4164174 | Wallsten | Aug 1979 | A |
4171605 | Putnam, Jr. et al. | Oct 1979 | A |
4184061 | Suzuki et al. | Jan 1980 | A |
4186217 | Tchack | Jan 1980 | A |
4190757 | Turpin et al. | Feb 1980 | A |
4196331 | Leveckis et al. | Apr 1980 | A |
D255751 | Daenen | Jul 1980 | S |
4219573 | Borek | Aug 1980 | A |
4228945 | Wysocki | Oct 1980 | A |
4230767 | Isaka et al. | Oct 1980 | A |
4230924 | Brastad et al. | Oct 1980 | A |
4233325 | Slangan et al. | Nov 1980 | A |
4241563 | Müller et al. | Dec 1980 | A |
4242378 | Arai | Dec 1980 | A |
4258086 | Beall | Mar 1981 | A |
4264668 | Balla | Apr 1981 | A |
4267420 | Brastad | May 1981 | A |
4279933 | Austin et al. | Jul 1981 | A |
4280032 | Levison | Jul 1981 | A |
4283427 | Winters et al. | Aug 1981 | A |
4291520 | Prince et al. | Sep 1981 | A |
4292332 | McHam | Sep 1981 | A |
4304352 | Humphries | Dec 1981 | A |
4306133 | Levinson | Dec 1981 | A |
4316070 | Prosise et al. | Feb 1982 | A |
4317017 | Bowen | Feb 1982 | A |
4324088 | Yamashita et al. | Apr 1982 | A |
4328254 | Waldburger | May 1982 | A |
4335291 | Ishino et al. | Jun 1982 | A |
4340138 | Bernhardt | Jul 1982 | A |
4345133 | Cherney et al. | Aug 1982 | A |
4348421 | Sakakibara et al. | Sep 1982 | A |
4351997 | Mattisson et al. | Sep 1982 | A |
4355757 | Roccaforte | Oct 1982 | A |
4373511 | Miles et al. | Feb 1983 | A |
4377493 | Boylan et al. | Mar 1983 | A |
4389438 | Ohtsuki et al. | Jun 1983 | A |
4390555 | Levison | Jun 1983 | A |
4398994 | Beckett | Aug 1983 | A |
4416906 | Watkins | Nov 1983 | A |
4425368 | Watkins | Jan 1984 | A |
4439656 | Peleg | Mar 1984 | A |
4453665 | Roccaforte et al. | Jun 1984 | A |
4461031 | Blamer | Jul 1984 | A |
4477705 | Danley et al. | Oct 1984 | A |
4478349 | Haverland et al. | Oct 1984 | A |
4481392 | Nibbe et al. | Nov 1984 | A |
4486640 | Bowen et al. | Dec 1984 | A |
4493685 | Blamer | Jan 1985 | A |
4496815 | Jorgensen | Jan 1985 | A |
4517045 | Beckett | May 1985 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4529089 | Gasbarra et al. | Jul 1985 | A |
4532397 | McClelland | Jul 1985 | A |
D280058 | Carlson | Aug 1985 | S |
4535889 | Terauds | Aug 1985 | A |
4552614 | Beckett | Nov 1985 | A |
4553010 | Bohrer et al. | Nov 1985 | A |
4571337 | Cage et al. | Feb 1986 | A |
4581989 | Swartley | Apr 1986 | A |
4584202 | Roccaforte | Apr 1986 | A |
4586649 | Webinger | May 1986 | A |
4610755 | Beckett | Sep 1986 | A |
4612431 | Brown et al. | Sep 1986 | A |
4626352 | Massey et al. | Dec 1986 | A |
4640838 | Isakson et al. | Feb 1987 | A |
4641005 | Seiferth | Feb 1987 | A |
4648549 | Trutna | Mar 1987 | A |
4657141 | Sorensen | Apr 1987 | A |
4661671 | Maroszek | Apr 1987 | A |
4661672 | Nakanaga | Apr 1987 | A |
4677905 | Johnson | Jul 1987 | A |
4678882 | Bohrer et al. | Jul 1987 | A |
D291522 | Daenen et al. | Aug 1987 | S |
4685997 | Beckett | Aug 1987 | A |
4697703 | Will | Oct 1987 | A |
4701585 | Stewart | Oct 1987 | A |
4703148 | Mikulski et al. | Oct 1987 | A |
4703149 | Sugisawa et al. | Oct 1987 | A |
4705927 | Levendusky et al. | Nov 1987 | A |
4713510 | Quick et al. | Dec 1987 | A |
4714012 | Hernandez | Dec 1987 | A |
4727706 | Beer | Mar 1988 | A |
4734288 | Engstrom et al. | Mar 1988 | A |
4738882 | Rayford et al. | Apr 1988 | A |
4739698 | Allaire | Apr 1988 | A |
4739898 | Brown | Apr 1988 | A |
4745249 | Daniels | May 1988 | A |
4777053 | Tobelmann et al. | Oct 1988 | A |
4794005 | Swiontek | Dec 1988 | A |
4797010 | Coelho | Jan 1989 | A |
4803088 | Yamamoto et al. | Feb 1989 | A |
4804582 | Noding et al. | Feb 1989 | A |
4806718 | Seaborne et al. | Feb 1989 | A |
4808780 | Seaborne | Feb 1989 | A |
4810845 | Seaborne | Mar 1989 | A |
4818831 | Seaborne | Apr 1989 | A |
4825025 | Seiferth | Apr 1989 | A |
4842876 | Anderson et al. | Jun 1989 | A |
4846350 | Sorensen | Jul 1989 | A |
4848579 | Barnes et al. | Jul 1989 | A |
4851246 | Maxwell et al. | Jul 1989 | A |
4853505 | Sorenson | Aug 1989 | A |
4853509 | Murakami | Aug 1989 | A |
4864089 | Tighe et al. | Sep 1989 | A |
4864090 | Maxwell et al. | Sep 1989 | A |
4866041 | Svarz et al. | Sep 1989 | A |
4870233 | McDonald et al. | Sep 1989 | A |
4873919 | Janssen | Oct 1989 | A |
4883936 | Maynard et al. | Nov 1989 | A |
4892744 | Ylvisaker | Jan 1990 | A |
4896009 | Pawlowski | Jan 1990 | A |
4899925 | Bowden et al. | Feb 1990 | A |
4904488 | LaBaw et al. | Feb 1990 | A |
4914266 | Parks et al. | Apr 1990 | A |
4915216 | Magers | Apr 1990 | A |
4915780 | Beckett | Apr 1990 | A |
4920251 | Whitenack et al. | Apr 1990 | A |
4922079 | Bowen et al. | May 1990 | A |
4923704 | Levinson | May 1990 | A |
4924048 | Bunce et al. | May 1990 | A |
4935592 | Oppenheimer | Jun 1990 | A |
4939332 | Hahn | Jul 1990 | A |
4943456 | Pollart et al. | Jul 1990 | A |
4948932 | Clough | Aug 1990 | A |
4952765 | Toyosawa | Aug 1990 | A |
4959516 | Tighe et al. | Sep 1990 | A |
4960598 | Swiontek | Oct 1990 | A |
4961944 | Matoba et al. | Oct 1990 | A |
4963708 | Kearns et al. | Oct 1990 | A |
D312189 | Noel | Nov 1990 | S |
4973502 | Holzmuller et al. | Nov 1990 | A |
4973810 | Brauner | Nov 1990 | A |
4982064 | Hartman et al. | Jan 1991 | A |
4987280 | Kanafani et al. | Jan 1991 | A |
4990349 | Chawan et al. | Feb 1991 | A |
4992638 | Hewitt et al. | Feb 1991 | A |
5011299 | Black, Jr. et al. | Apr 1991 | A |
5025715 | Sir | Jun 1991 | A |
5026958 | Palacios | Jun 1991 | A |
5035800 | Kopach | Jul 1991 | A |
5038009 | Babbitt | Aug 1991 | A |
5039001 | Kinigakis et al. | Aug 1991 | A |
5041295 | Perry et al. | Aug 1991 | A |
5044777 | Watkins et al. | Sep 1991 | A |
5050791 | Bowden et al. | Sep 1991 | A |
5052369 | Johnson | Oct 1991 | A |
5057331 | Levinson | Oct 1991 | A |
D321302 | Zimmerman | Nov 1991 | S |
5063072 | Gillmore et al. | Nov 1991 | A |
5075526 | Sklenak et al. | Dec 1991 | A |
5077066 | Mattson et al. | Dec 1991 | A |
5081330 | Brandberg et al. | Jan 1992 | A |
5094865 | Levinson | Mar 1992 | A |
5095186 | Scott Russell et al. | Mar 1992 | A |
5106635 | McCutchan et al. | Apr 1992 | A |
5107087 | Yamada et al. | Apr 1992 | A |
5108768 | So | Apr 1992 | A |
5153402 | Quick et al. | Oct 1992 | A |
5176284 | Sorensen | Jan 1993 | A |
5189947 | Yim | Mar 1993 | A |
5190777 | Anderson et al. | Mar 1993 | A |
5195829 | Watkins et al. | Mar 1993 | A |
5200590 | Bowen et al. | Apr 1993 | A |
D335445 | Detert et al. | May 1993 | S |
D335821 | Detert et al. | May 1993 | S |
D336242 | Detert et al. | Jun 1993 | S |
5216947 | Cheng | Jun 1993 | A |
5223291 | Levinson et al. | Jun 1993 | A |
5230914 | Akervik | Jul 1993 | A |
5241149 | Watanbe et al. | Aug 1993 | A |
D341990 | Yim | Dec 1993 | S |
5294765 | Archibald et al. | Mar 1994 | A |
5298708 | Babu et al. | Mar 1994 | A |
5300747 | Simon | Apr 1994 | A |
5315083 | Green | May 1994 | A |
5363750 | Miller et al. | Nov 1994 | A |
D353303 | Davis | Dec 1994 | S |
5370042 | Tolchin et al. | Dec 1994 | A |
5419451 | Bitel, Jr. | May 1995 | A |
5423453 | Fritz | Jun 1995 | A |
5520301 | Sohn | May 1996 | A |
D370598 | Koch | Jun 1996 | S |
D371963 | Ahern, Jr. | Jul 1996 | S |
5540381 | Davis | Jul 1996 | A |
5558798 | Tsai | Sep 1996 | A |
D376512 | Klemme | Dec 1996 | S |
5588587 | Stier et al. | Dec 1996 | A |
D378565 | Cousins | Mar 1997 | S |
D378566 | Cousins | Mar 1997 | S |
5645300 | Hill | Jul 1997 | A |
5645762 | Cook et al. | Jul 1997 | A |
5650084 | Bley | Jul 1997 | A |
D384555 | Bradley | Oct 1997 | S |
5674546 | Barnes et al. | Oct 1997 | A |
D386042 | Miller | Nov 1997 | S |
5690853 | Jackson et al. | Nov 1997 | A |
5695801 | Oh | Dec 1997 | A |
5698306 | Prosise et al. | Dec 1997 | A |
5704485 | Cautereels et al. | Jan 1998 | A |
5718933 | Fultz | Feb 1998 | A |
D391440 | Cousins | Mar 1998 | S |
5726426 | Davis et al. | Mar 1998 | A |
5741534 | Chung | Apr 1998 | A |
5747086 | Bows et al. | May 1998 | A |
5753895 | Olson et al. | May 1998 | A |
5770840 | Lorence | Jun 1998 | A |
5807597 | Barnes et al. | Sep 1998 | A |
D405561 | Willinger et al. | Feb 1999 | S |
5869120 | Blazevich | Feb 1999 | A |
5871790 | Monier et al. | Feb 1999 | A |
5876811 | Blackwell et al. | Mar 1999 | A |
5900264 | Gics | May 1999 | A |
5913966 | Arnone et al. | Jun 1999 | A |
5916470 | Besser et al. | Jun 1999 | A |
5916620 | Oh | Jun 1999 | A |
5925281 | Levinson | Jul 1999 | A |
5928554 | Olson et al. | Jul 1999 | A |
5931333 | Woodnorth et al. | Aug 1999 | A |
5961872 | Simon et al. | Oct 1999 | A |
5970858 | Boehm et al. | Oct 1999 | A |
5974953 | Messerli | Nov 1999 | A |
5986248 | Matsuno et al. | Nov 1999 | A |
5988045 | Housley | Nov 1999 | A |
5988050 | Foster, Jr. | Nov 1999 | A |
D418017 | Henry | Dec 1999 | S |
D419371 | Haley | Jan 2000 | S |
6018157 | Craft | Jan 2000 | A |
6042856 | Sagan et al. | Mar 2000 | A |
D422176 | Laib | Apr 2000 | S |
6049072 | Olson et al. | Apr 2000 | A |
6055901 | Gantos et al. | May 2000 | A |
6085930 | Curtis | Jul 2000 | A |
6097017 | Pickford | Aug 2000 | A |
6103291 | Fernandez Tapia | Aug 2000 | A |
6106882 | Oh et al. | Aug 2000 | A |
D432414 | Simpson et al. | Oct 2000 | S |
D432914 | Hayes et al. | Oct 2000 | S |
6126976 | Hasse, Jr. et al. | Oct 2000 | A |
6136355 | Fukuyama | Oct 2000 | A |
D433884 | Fujimoto | Nov 2000 | S |
6147337 | Besser | Nov 2000 | A |
6150646 | Lai et al. | Nov 2000 | A |
6167799 | Macias | Jan 2001 | B1 |
6168044 | Zettle et al. | Jan 2001 | B1 |
6175105 | Rubbright et al. | Jan 2001 | B1 |
6180148 | Yajima | Jan 2001 | B1 |
6180150 | Schäfer | Jan 2001 | B1 |
6183789 | Nilsson et al. | Feb 2001 | B1 |
6187354 | Hopkins | Feb 2001 | B1 |
6192792 | Gremillion | Feb 2001 | B1 |
6196406 | Ennis | Mar 2001 | B1 |
6217918 | Oh et al. | Apr 2001 | B1 |
D441597 | Wyche | May 2001 | S |
D442425 | Wyche | May 2001 | S |
6229131 | Koochaki | May 2001 | B1 |
6230919 | Guillin | May 2001 | B1 |
D445633 | Bradley | Jul 2001 | S |
D449102 | Shin | Oct 2001 | S |
D449495 | Tucker et al. | Oct 2001 | S |
6309684 | Hopkins, Sr. | Oct 2001 | B2 |
6394337 | Ross et al. | May 2002 | B1 |
6396036 | Hanson | May 2002 | B1 |
6422453 | Wang | Jul 2002 | B1 |
6455084 | Johns | Sep 2002 | B2 |
6463844 | Wang et al. | Oct 2002 | B1 |
6467399 | Boutte | Oct 2002 | B1 |
6486455 | Merabet | Nov 2002 | B1 |
D466762 | Cote et al. | Dec 2002 | S |
6509047 | Edomwonyi | Jan 2003 | B2 |
D470768 | Melhede | Feb 2003 | S |
6559431 | Hopkins | May 2003 | B2 |
6565910 | Schell et al. | May 2003 | B1 |
D477187 | McCallister et al. | Jul 2003 | S |
6608292 | Barnes | Aug 2003 | B1 |
6612482 | Ross | Sep 2003 | B2 |
6645539 | Bukowski et al. | Nov 2003 | B2 |
D483616 | Thonis | Dec 2003 | S |
D485473 | Dais et al. | Jan 2004 | S |
6727484 | Policappelli | Apr 2004 | B2 |
6803551 | Kim et al. | Oct 2004 | B2 |
D497744 | Portugal | Nov 2004 | S |
6818873 | Savage et al. | Nov 2004 | B2 |
6840159 | Li | Jan 2005 | B1 |
D502847 | Leonori | Mar 2005 | S |
6868980 | Schultz et al. | Mar 2005 | B2 |
D505048 | Cornfield | May 2005 | S |
D505590 | Greiner et al. | May 2005 | S |
D508822 | Smith et al. | Aug 2005 | S |
D513942 | De Groote | Jan 2006 | S |
7008214 | Faddi | Mar 2006 | B2 |
7022359 | Montserrate Gibernau | Apr 2006 | B2 |
7025213 | Chen | Apr 2006 | B2 |
D521380 | Jackson et al. | May 2006 | S |
7038181 | Edmark | May 2006 | B2 |
7045190 | Inagaki et al. | May 2006 | B2 |
D526840 | Carlson | Aug 2006 | S |
7090090 | Ohyama | Aug 2006 | B2 |
D529797 | Wilcox et al. | Oct 2006 | S |
D543796 | Lion et al. | Jun 2007 | S |
D552433 | Stewart | Oct 2007 | S |
D557982 | Ablo et al. | Dec 2007 | S |
D558536 | Curtin | Jan 2008 | S |
D558602 | Kissner et al. | Jan 2008 | S |
D563157 | Bouveret et al. | Mar 2008 | S |
D564287 | Bouveret et al. | Mar 2008 | S |
D564307 | Repp | Mar 2008 | S |
D571656 | Maslowski | Jun 2008 | S |
D577295 | Miller et al. | Sep 2008 | S |
D582201 | Kellermann | Dec 2008 | S |
D582791 | Elmerhaus | Dec 2008 | S |
7468498 | Tuszkiewicz et al. | Dec 2008 | B2 |
D584111 | Eide et al. | Jan 2009 | S |
D584145 | Young | Jan 2009 | S |
D590663 | Simon et al. | Apr 2009 | S |
D591591 | Moecks et al. | May 2009 | S |
D592948 | Mayer | May 2009 | S |
D593369 | Green et al. | Jun 2009 | S |
D594328 | Shapiro et al. | Jun 2009 | S |
D598717 | Jalet | Aug 2009 | S |
D607095 | LeMay et al. | Dec 2009 | S |
D610903 | Shapiro et al. | Mar 2010 | S |
D611300 | Chen et al. | Mar 2010 | S |
D612196 | Furlong | Mar 2010 | S |
D613131 | Chen et al. | Apr 2010 | S |
D630061 | Kellermann | Jan 2011 | S |
D630507 | Short et al. | Jan 2011 | S |
D630940 | Shapiro et al. | Jan 2011 | S |
D632561 | Short et al. | Feb 2011 | S |
D633810 | Jenkins | Mar 2011 | S |
7977612 | Levy et al. | Jul 2011 | B2 |
20010035402 | Barrow | Nov 2001 | A1 |
20010043971 | Johns | Nov 2001 | A1 |
20010050002 | Bonanno | Dec 2001 | A1 |
20020096450 | Garst | Jul 2002 | A1 |
20020110622 | Lloyd et al. | Aug 2002 | A1 |
20030003200 | Bukowski et al. | Jan 2003 | A1 |
20030068411 | McCallister | Apr 2003 | A1 |
20030167932 | Chen | Sep 2003 | A1 |
20030213718 | Ducharme et al. | Nov 2003 | A1 |
20040058038 | Lee | Mar 2004 | A1 |
20040107637 | Sieverding | Jun 2004 | A1 |
20040121049 | Ebner et al. | Jun 2004 | A1 |
20040164075 | Henze et al. | Aug 2004 | A1 |
20040216620 | Quiggins et al. | Nov 2004 | A1 |
20040238438 | Chen | Dec 2004 | A1 |
20050040161 | Lin et al. | Feb 2005 | A1 |
20050051549 | Nelson | Mar 2005 | A1 |
20050069602 | Faddi | Mar 2005 | A1 |
20050079250 | Mao et al. | Apr 2005 | A1 |
20050079252 | Kendig et al. | Apr 2005 | A1 |
20050082305 | Dais et al. | Apr 2005 | A1 |
20050092762 | Murat et al. | May 2005 | A1 |
20050109772 | Thorpe et al. | May 2005 | A1 |
20050112243 | Bellmann | May 2005 | A1 |
20050115417 | Murat et al. | Jun 2005 | A1 |
20050208182 | Gilbert et al. | Sep 2005 | A1 |
20050220939 | Morrow | Oct 2005 | A1 |
20050229793 | Wengrovsky | Oct 2005 | A1 |
20050256060 | Hilgers et al. | Nov 2005 | A1 |
20050271776 | Siegel | Dec 2005 | A1 |
20050281921 | Langston et al. | Dec 2005 | A1 |
20060013929 | Morris et al. | Jan 2006 | A1 |
20060088678 | Berrier et al. | Apr 2006 | A1 |
20060110498 | Dellinger et al. | May 2006 | A1 |
20060118552 | Tiefenback | Jun 2006 | A1 |
20060121168 | Flaherty et al. | Jun 2006 | A1 |
20060151339 | Bradley et al. | Jul 2006 | A1 |
20060236593 | Cap | Oct 2006 | A1 |
20060260598 | Bjork et al. | Nov 2006 | A1 |
20060289522 | Middleton et al. | Dec 2006 | A1 |
20070029314 | Rodgers et al. | Feb 2007 | A1 |
20070059406 | Shahsavarani | Mar 2007 | A1 |
20070090103 | France et al. | Apr 2007 | A1 |
20070116806 | Parsons | May 2007 | A1 |
20070116807 | Parsons | May 2007 | A1 |
20070131679 | Edwards et al. | Jun 2007 | A1 |
20070251874 | Stewart | Nov 2007 | A1 |
20080069485 | France et al. | Mar 2008 | A1 |
20080138473 | Pawlick et al. | Jun 2008 | A1 |
20080178744 | Hill | Jul 2008 | A1 |
20080210686 | Shapiro et al. | Sep 2008 | A1 |
20090022858 | Pawlick | Jan 2009 | A1 |
20090035433 | France et al. | Feb 2009 | A1 |
20090078125 | Pawlick et al. | Mar 2009 | A1 |
20090142455 | Parsons | Jun 2009 | A1 |
20100015293 | Shapiro | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
672 585 | Dec 1989 | CH |
28 10 175 | Sep 1979 | DE |
0326105 | Aug 1989 | EP |
0 449 643 | Oct 1991 | EP |
1352841 | Apr 2002 | EP |
1 245 504 | Oct 2002 | EP |
1 352 848 | Oct 2003 | EP |
1 514 804 | Mar 2005 | EP |
1 464 262 | Jul 2005 | EP |
1 612 150 | Jan 2006 | EP |
1 749 757 | Feb 2007 | EP |
2 631 315 | Nov 1989 | FR |
2 774 262 | Aug 1999 | FR |
2 846 196 | Apr 2004 | FR |
2 860 213 | Apr 2005 | FR |
2 929 491 | Oct 2009 | FR |
1560488 | Feb 1980 | GB |
2 218 962 | Nov 1989 | GB |
2 295 371 | May 1996 | GB |
2 308 465 | Jun 1997 | GB |
2340823 | Mar 2000 | GB |
2-109882 | Apr 1990 | JP |
4367476 | Dec 1992 | JP |
06293366 | Oct 1994 | JP |
09051767 | Feb 1997 | JP |
10094370 | Apr 1998 | JP |
10-129742 | May 1998 | JP |
11113511 | Apr 1999 | JP |
2001348074 | Dec 2001 | JP |
2005059863 | Mar 2005 | JP |
2005-312923 | Nov 2005 | JP |
2006-34645 | Feb 2006 | JP |
2010-189031 | Sep 2010 | JP |
01011879 | Jun 2002 | MX |
1149999 | Apr 1985 | SU |
WO 8600275 | Jan 1986 | WO |
WO 9607604 | Mar 1996 | WO |
WO 9833399 | Aug 1998 | WO |
WO 9959897 | Nov 1999 | WO |
WO 9959897 | Nov 1999 | WO |
WO 02051716 | Jul 2002 | WO |
WO 03086882 | Oct 2003 | WO |
WO 2004045970 | Jun 2004 | WO |
WO 2006098950 | Sep 2006 | WO |
WO 2006128156 | Nov 2006 | WO |
WO 2006136825 | Dec 2006 | WO |
WO 2007003864 | Jan 2007 | WO |
WO 2008109448 | Sep 2008 | WO |
WO 2008109448 | Sep 2008 | WO |
WO 2009097030 | Aug 2009 | WO |
WO 2009136038 | Nov 2009 | WO |
Entry |
---|
U.S. Appl. No. 29/346,147, filed Oct. 27, 2009 entitled “Container Assembly”. |
U.S. Appl. No. 29/346,148, filed Oct. 27, 2009 entitled Container Basket. |
U.S. Appl. No. 29/364,804, filed Jun. 29, 2010 entitled “Container Assembly”. |
U.S. Appl. No. 29/364,807, filed Jun. 29, 2010 entitled “Container Basket”. |
Certified priority document in U.S. Appl. Serial. No. 12/012,403, filed Feb. 2, 2008 (filed in Int'l Application No. PCT/US2008/080874 on Nov. 3, 2008). |
http://www.unclebens.de/produkte/heiss—auf—reis/heiss—auf reis—uebersicht.aspx, Mars Inc., 2006, 1 pg. |
http://www.pastanmoresale.com, site accessed Jun. 15, 2010, 2 pgs. (now being sold at http://pastaboat.com). |
Machine translation FR 2774262, Etimble et al., Aug. 1999, 9 pgs. |
Docket Sheet for Green v. ConAgra Foods, Case # 8:08-cv-00200, 11 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Complaint for Patent Infringement and Injunctive Relief, filed May 5, 2008, 13 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Answer, Affirmative Defenses and Counterclaims of Defendant ConAgra Foods, Inc., filed, May 5, 2008, 12 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Answer to Counterclaims, filed May 5, 2008, 2 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Joint Claim Construction Chart, filed Sep. 24, 2008, 3 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Plaintiff's Opening Brief on Claim Construction, filed Oct. 10, 2008, 27 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Index of Evidence in Support of ConAgra Foods, Inc.'s Opening Markman Brief, filed Oct. 10, 2008, 105 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Plaintiff's Responsive Brief on Claim Construction, filed Oct. 31, 2008, 16 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Defendant ConAgra Foods, Inc.'s Brief in Response to Plaintiffs Opening Brief on Claim Construction, filed Oct. 31, 2008, 17 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Memorandum and Order, filed Jan. 9, 2009, 14 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Transcript of Markman Hearing Proceedings Before the Honorable Lyle E. Strom, filed Jan. 15, 2009, 76 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Joint Stipulation of Dismissal with Prejudice, filed Feb. 2, 2009, 3 pgs. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Order, filed Feb. 3, 2009, 1 pg. |
Green v. ConAgra Foods, Case #8:08-cv-00200, Report on the Determination of an Action Regarding Patent, filed Feb. 4, 2009, 2 pg. |
Invitation to Pay Additional Fees with Partial International Search mailed Jun. 25, 2008. |
International Search Report dated Aug. 20, 2008, Application No. PCT/US2008/055512. |
International Search Report dated Oct. 20, 2008, Application No. PCT/US2008/071917. |
U.S. Official Action Mailed Sep. 18, 2008 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Apr. 24, 2009 in U.S. Appl. No. 11/286,008. |
U.S. Official Action Mailed Apr. 30, 2009 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Oct. 16, 2009 in U.S. Appl. No. 11/903,732. |
U.S. Official Action Mailed Oct. 29, 2009 in U.S. Appl. No. 11/890,297. |
U.S. Official Action Mailed Nov. 12, 2009 in U.S. Appl. No. 11/286,008. |
U.S. Official Action Mailed Nov. 25, 2009 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Mar. 10, 2010 in U.S. Appl. No. 11/903,732. |
U.S. Official Action Mailed Mar. 29, 2010 in U.S. Appl. No. 29/351,253. |
U.S. Official Action Mailed Apr. 14, 2010 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed May 21, 2010 in U.S. Appl. No. 11/286,008. |
International Search Report and Written Opinion mailed Jan. 12, 2009. |
“Cafe Steamers,” HealthyChoice.com, http://www.healthychoice.com/products/meals/cafe—steamers.jsp (Retrieved Aug. 2007). |
“Ziploc® Containers With Snap‘n’Seal Lids: Designed With You in Mind,” brochure found at http://www.ziploc.com/food-storage-containers/, 2 pages (Retrieved Nov. 14, 2005). |
“Ziploc® Containers With Snap‘n’Seal Lids: Storage Made Simpler!,” brochure found at http://www.ziploc.com/new—containers.html, 1 page (Retrieved Nov. 14, 2005). |
Anchor Hocking '70 Catalog, p. 83, baking dishes at #4, 5 and 6 (Oct. 1970). |
France, “Steam Cooking Apparatus,” U.S. Appl. No. 60/728,468, filed Oct. 20, 2005. |
McCallister, “Microwaveable Pasta Product,” U.S. Appl. No. 09/965,300, filed Sep. 28, 2001. |
Photographs of a food tray available from Inter Frost GmbH at a trade show in Germany, Oct. 2005. |
European Office Action Mailed Jul. 15, 2010 in Application No. 08731136.1. |
U.S. Official Action Mailed Dec. 11, 2008 in U.S. Appl. No. 11/286,008. |
U.S. Official Action Mailed May 25, 2010 in U.S. Appl. No. 11/423,259. |
U.S. Official Action Mailed Oct. 6, 2010 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Nov. 10, 2010 in U.S. Appl. No. 11/423,259. |
U.S. Official Action Mailed Dec. 9, 2010 in U.S. Appl. No. 29/346,147. |
U.S. Official Action Mailed Dec. 9, 2010 in U.S. Appl. No. 29/346,148. |
U.S. Official Action Mailed Dec. 28, 2010 in U.S. Appl. No. 29/364,804. |
U.S. Official Action Mailed Feb. 23, 2011 in U.S. Appl. No. 29/369,419. |
U.S. Official Action Mailed Apr. 1, 2011 in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Apr. 6, 2011 in U.S. Appl. No. 12/277,886. |
U.S. Official Action Mailed Apr. 8, 2011 in U.S. Appl. No. 29/369,416. |
U.S. Official Action Mailed Apr. 12, 2011 in U.S. Appl. No. 29/369,423. |
Supp. International Search Report dated Mar. 15, 2011, Application No. PCT/CA2006/001894. |
U.S. Official Action mailed Jul. 15, 2011, in U.S. Appl. No. 11/423,259. |
European Search Report dated Jan. 27, 2011, in Application No. 08832921.4-1261. |
U.S. Official Action dated Aug. 5, 2011, in U.S. Appl. No. 11/286,008. |
U.S. Official Action dated Aug. 9, 2011, in U.S. Appl. No. 11/903,732. |
European Allowance dated Jul. 18, 2011, in Application No. 10163678.5-2308. |
U.S. Official Action mailed Aug. 19, 2011, in U.S. Appl. No. 11/424,520. |
U.S. Official Action mailed Aug. 25, 2011, in U.S. Appl. No. 12/277,886. |
U.S. Official Action mailed Nov. 7, 2011, in U.S. Appl. No. 11/890,297. |
Starmaid Microwave Steamer Jun. 26, 2006, [on line], retrieved on Oct. 13, 2011. Retrieved from the Internet: URL:<http://www.flickr.com/photos/starmaid/5180282532/>. |
Progressive International Mini Steamer (on line), Jul. 18, 2006. Retrieved from the Internet at the URL listed in the column immediately following this column: http://www.google.com/search?q=microwave+steamer&hi=en&biw=1291&bih=1015&sa=X&ei=0ZuXTiqGMKbt0gGMyoHWBA&ved=0CAkQpwIoBg&source=int&tbs=cdr%2Ccd—max%3A8%2F2%2F2007&tbm=#pq=microwave+steamer&hl=&en&sugexp=gsih&cp=12&gs—id=9&xhr=t&q=microwave+mini+steamer&pf=p&sclient=psy-ab&biw=1291&bih=1015&tbs=img:1%2Ccdr%3A1%2Ccd—max%3A8%2F2%2F2006&. |
Mini Steamer—Progessive International / Starmaid vegetable steamer, [on line], retrieved Oct. 21, 2011. Retrieved from the Internet: URL:<http://www.campingcookwarepro.com/Progressive—International—Microwavable—Mini—Steamer>. |
Tupperware India, Cook easy Microsteamer, The Hindu Business Line, [on line], Jun. 26, 2003, retrieved on Oct. 21, 2011. Retrieved from the Internet: URL:<http://www.thehindubusinessline.in/catalyst/2003/06/26/stories/2003062600070406.htm>. |
Microwave mini steamer, Lunch in a Box, [on line]Feb. 12, 2007, retrieved on Oct. 13, 2011. Retrieved from the Internet: URL:<http://www.flickr.com/photos/24506652@N00/388209604/>. |
Microwave steamer 2, Oct. 16, 2006, [on line]. Retrieved from the Internet: URL:<http://www.flickr.com/photos/momsinmind/271170248/>. |
U.S. Notice of Allowance and Fees Due in U.S. Appl. No. 29/424,416. |
U.S. Official Action mailed May 2, 2012, in U.S. Appl. No. 11/903,732. |
U.S. Official Action mailed May 2, 2012, in U.S. Appl. No. 12/040,641. |
U.S. Official Action mailed Sep. 24, 2012, in U.S. Appl. No. 12/471,114. |
U.S. Official Action mailed Sep. 25, 2012, in U.S. Appl. No. 12/040,641. |
Succinylated Monoglycerides; http://www.fao.org/ag/agn/jecfa-additives/specs/Monograph1/Additive-443.pdf; 1982; obtained Sep. 14, 2012. |
U.S. Official Action mailed Sep. 10, 2012, in U.S. Appl. No. 11/903,732. |
U.S. Official Action mailed Jul. 3, 2013, in U.S. Appl. No. 11/286,008. |
U.S. Official Action mailed Aug. 21, 2013, in U.S. Appl. No. 11/890,297. |
U.S. Official Action mailed Jan. 24, 2013, in U.S. Appl. No. 12/471,114. |
Propylene Glycol Monostearate; Hawley's Condensed Chemical Dictionary Thirteenth Edition; 1997. |
U.S. Official Action mailed Dec. 20, 2011 in U.S. Appl. No. 11/423,259. |
U.S. Official Action mailed Jan. 19, 2012, in U.S. Appl. No. 11/286,008. |
U.S. Official Action mailed Jan. 25, 2012, in U.S. Appl. No. 11/903,732. |
U.S. Official Action mailed Mar. 26, 2012, in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Jan. 16, 2014, in U.S. Appl. No. 12/277,886. |
U.S. Official Action Mailed Jan. 16, 2014, in U.S. Appl. No. 11/286,008. |
U.S. Official Action Mailed Jan. 22, 2014, in U.S. Appl. No. 12/471,114. |
U.S. Official Action Mailed Jan. 29, 2014, in U.S. Appl. No. 12/040,641. |
U.S. Official Action mailed Sep. 27, 2013, in U.S. Appl. No. 11/423,259. |
U.S. Official Action mailed Sep. 19, 2013, in U.S. Appl. No. 12/471,114. |
International Search Report mailed Dec. 4, 2013 in Application No. PCT/US2013/044064. |
U.S. Official Action Mailed Mar. 21, 2014, in U.S. Appl. No. 11/703,066. |
U.S. Official Action Mailed Apr. 14, 2014, in U.S. Appl. No. 11/423,259. |
U.S. Official Action Mailed Apr. 21, 2014, in U.S. Appl. No. 11/424,520. |
U.S. Official Action Mailed Jun. 16, 2014, in U.S. Appl. No. 12/277,886. |
Number | Date | Country | |
---|---|---|---|
20070181008 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60728468 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11423259 | Jun 2006 | US |
Child | 11703066 | US |