The invention relates generally to the thermal management of battery-based power systems, and more particularly to draining coolant in the event of a coolant breach within such a system.
Lithium-ion and related batteries, collectively known as a rechargeable energy storage system (RESS), are being used in automotive applications as a way to supplement, in the case of hybrid electric vehicles (HEVs), or supplant, in the case of purely electric vehicles (EVs), conventional internal combustion engines (ICEs). The ability to passively store energy from stationary and portable sources, as well as from recaptured kinetic energy provided by the vehicle and its components, makes batteries ideal to serve as part of a propulsion system for cars, trucks, buses, motorcycles and related vehicular platforms. In the present context, a cell is a single electrochemical unit, whereas a battery is made up of one or more cells joined in series, parallel or both, depending on desired output voltage and capacity.
Because an energized battery cell, module, section or pack is capable of producing large amounts of energy, temperature (and the removal of excess quantities thereof) is one of the most significant factors impacting both the performance and life of a battery. To keep temperature excesses from occurring, cooling systems are frequently integrated into a RESS based platform. In one conventional form, the cooling system circulates a liquid-based coolant using alcohol, water or a combination thereof. Typically, the RESS is configured to promote as much contact between the heat-generating portions of the individual cells and the coolant as possible. However, the same cooling system that provides necessary heat-removal may—in the event of an internal failure of one or more battery cells due to a crash event, component wear or a manufacturing defect—lead to leakage of the coolant onto sensitive electrical components (such as circuit boards or the like) in and around the individual cells. Such leakage may provide an efficient and unintended path for the conveyance of the electrical current being generated by the batteries such that in one undesirable form, the leaked coolant may lead to a short circuit of these sensitive system components.
It would be beneficial to provide early detection of loss of coolant into the battery following an accident or related incident to avoid harm to a RESS. It would be further beneficial to implement automated corrective actions in the event of a detected or imminent leakage of coolant into sensitive portions of a battery system.
In one embodiment, an apparatus for a drain plug assembly may include a carrier configured to provide structural rigidity to the drain plug, the carrier defining a cavity therein, an inlet disposed on a first surface of the carrier, an outlet disposed on a second surface of the carrier, and the first surface and the second surface fluidly displaced from one another and coupled to the cavity. A soluble plug may be disposed within the cavity of the carrier along with an impedance element. A circuit may be configured to measure an impedance change in the impedance element and a first lead and a second lead may be configured to signally connect the impedance element to the circuit.
In another embodiment, an apparatus for a liquid cooled battery pack may include a plurality of batteries, a cooling circuit comprising a containment vessel coupled with a cooling inlet and a cooling outlet and enclosing a battery housing, the battery housing enclosing the plurality of batteries and comprising a drain outlet. A drain plug may be disposed within the drain outlet and including a carrier configured to provide structural rigidity to the drain plug, the carrier defining a cavity therein, an inlet disposed on a first surface of the carrier, an outlet disposed on a second surface of the carrier, the first surface and the second surface fluidly displaced from one another and coupled to the cavity, a soluble plug disposed within the cavity of the carrier, and an impedance element disposed within the cavity of the carrier. A circuit configured to measure an impedance change in the impedance element and provide an indication when an output equals a threshold resistance value where a first lead and a second lead to electrically couple the impedance element to the circuit, and the soluble plug may be configured to at least partially dissolve when fluidly coupled with a coolant allowing a portion of the coolant to flow between the battery housing and the drain outlet.
In yet another embodiment, a method for draining a liquid coolant from an automotive liquid cooled battery pack may include circulating the liquid coolant around a battery housing of a battery pack and draining the liquid coolant from the battery housing with a drain plug in the event of a leak, the drain plug including a carrier configured to provide structural rigidity to the drain plug, the carrier defining a cavity therein, an inlet disposed on a first surface of the carrier, an outlet disposed on a second surface of the carrier, the first surface and the second surface fluidly displaced from one another and coupled to the cavity, a soluble plug disposed within the cavity of the carrier, with an impedance element cooperative with the carrier and indicating when the leak occurs using a circuit configured to detect a loss of continuity in the impedance element.
These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The following detailed description of the preferred embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
The present application discloses several embodiments of a drain plug for use in a high voltage battery pack that may be used in the event of an electric vehicle crash or coolant containment malfunction to avoid having the coolant provide an unintended electrical path or short out the batteries or the electronics associated with the battery pack. Embodiments of the drain plug allow for the coolant to be drained from the battery pack in the event of a crash or coolant containment malfunction when the drain plug comes into contact with the coolant before damage to the battery pack or associated electronics can occur. An associated circuit with the drain plug provides notification of the activation of the drain plug to the on-board computer systems.
When a coolant leak occurs, the soluble plug 15 may first come into contact with the coolant at the inlet 30. A dissolving rate of the soluble plug is controlled by a number of factors to include: a height of the soluble plug, cross-linking density, humidity, and temperature. The height of the soluble plug 15 is the distance between the inlet 30 and the outlet 35 that the soluble plug 15 occupies within the cavity 20. The height of the soluble plug 15 may be adjusted to change the dissolving rate required before the drain plug 10 is opened at the outlet 35 and releases the coolant from the battery pack.
Furthermore, as explained below in greater detail, an impedance element 50 used to detect when the drain plug 10 is in a state of dissolving, is cooperative with the carrier 25 and may be placed at varying heights within the soluble plug 15. This allows for a detection of coolant to occur at a specified point in the dissolving process and may be used to avoid false leak detection in the event of normal operation of the vehicle causes the soluble plug 15 to erode, such as for example, temperature, caustic vapors, etc. The soluble plug 15 composition may be adjusted to match the humidity of the environment in which it is placed to ensure that the drain plug 10 does not erode prematurely. As used throughout this application, eroding is the wearing away of the soluble plug 15 due to other factors besides dissolving.
The impedance element 50 is disposed within the cavity 20. The impedance element 50 is electrically coupled to a circuit (described below) via a first lead 40 and a second lead 45. In some embodiments, the soluble plug 15 may be used as the impedance element 50. The impedance of the soluble plug 15 may be electrically sensed between the first lead 40 and the second lead. As the soluble plug 15 is dissolved by the coolant, as for example in the case of a coolant leak, the impedance of the soluble plug 15 would increase until eventually it would reach a high resistance state as the soluble plug 15 completely dissolves compared to its initial low resistance state. The high resistiance state indicates a loss of continuity in the impedance element 50, soluble plug 15, or a conductive coating. In some embodiments, the impedance element may be the conductive coating electrically coupled to the first lead 40 to the second lead 45. The conductive coating may be made from any material that conducts electricity to include conductive polymers, conductive epoxy, or metal, as for example, the metal coating may be silver, copper, zinc, nickel, gold, or aluminum. The conductive coating may be on the surface of the soluble plug 15 or it may be a conductive ring embedded within the soluble plug 15.
The fall-away circuit 270 could also indicate the soluble plug has dissolved with a short circuit instead of the open circuit of the impedance element 50. Referring to
It should be understood that the first component set 160 may be disposed within the cavity 20 or coupled to the carrier 25. The dummy gauge 250, the plurality of resistors, 215, and/or the variable resistor 217 may be imprinted on a circuit board, the soluble plug 15, or the inside of the carrier 25 within the cavity 20. Furthermore, the dummy gauge 250, the plurality of resistors 205, and/or the variable resistor 217 may be coupled to the exterior of the carrier 25.
It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present invention. Likewise, for the purposes of describing and defining the present invention, it is noted that the term “device” is utilized herein to represent a combination of components and individual components, regardless of whether the components are combined with other components. For example, a “device” according to the present invention may comprise an electrochemical conversion assembly or fuel cell, as well as a larger structure (such as a vehicle) that incorporates an electrochemical conversion assembly according to the present invention. Moreover, the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. As such, it may represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limited to these preferred aspects of the invention.
The present application hereby is related to U.S. application Ser. No. ______ filed ______, entitled “Deflection Sensitive Coolant Activated Drain Plug Detection System for High Voltage Battery Packs,” attorney docket # P020498-FCA-CHE.