A coolant air bleed structure (also referred as an air bleed member) for a water-cooled internal combustion engine and an engine incorporating same according to an illustrative embodiment of the present invention is described below in detail with reference to the accompanying drawings.
Throughout the following discussion, a “front,” a “rear,” a “right,” and a “left” refer to corresponding directions, i.e., a front/forward direction, a rear direction, a right direction and a left direction, respectively, as viewed from a rider's normal position on the motorcycle during driving of the motorcycle.
Referring to
The main frame 11 is formed, for example, of an aluminum alloy casting having a hollow inverted-U shape. The main frame 11 extends downwardly toward the rear from the head pipe 12.
The power unit 15 includes a water-cooled four-stroke, in-line four-cylinder, DOHC four-valve, five-bearing type engine 16 having an electronic fuel injection system. Further the power unit 15 includes a constant-mesh six-speed return transmission 17.
The engine 16 according to an embodiment of the present invention includes a cylinder having a cylinder axis inclined forwardly. The engine 16 is a cross flow type and includes a cylinder head 19, an exhaust port 20 on a forward side of an inclination direction and an intake port 21 on a rearward side of the inclination direction.
The engine 16 according to another embodiment of the present invention includes a plurality of (e.g., four) cylinders, each having a cylinder axis inclined forwardly. The engine 16 is a cross flow type and includes a cylinder head 19, four exhaust ports 20 on a forward side of an inclination direction and four intake ports 21 on a rearward side of the inclination direction.
An intake manifold (not shown) connected to the intake ports 21 of the cylinder head 19 includes a throttle valve having an injector (not shown). Upon providing an electric signal (a current signal or a voltage signal) from an engine control unit (not shown) based on an opening of a throttle lever (accelerator), the injector injects fuel under high pressure into the intake manifold.
Referring to
The oil cooler 23 allows coolant to circulate via a desired path, in which the coolant does not directly come not in contact with a lubricant that flows through an oil element 29 via an oil gallery (not shown). The water jacket 24 has a circulation path extending from a coolant inlet port (not shown) situated in the cylinder head 19 to the coolant outlet port 25 via outer portion of four cylinders, i.e., cylinder liners (not shown) in a crankcase 30 and an outer portion of a combustion chamber (not shown) of the cylinder head 19.
The thermostat housing 27 is situated at a lower leftward portion of the cylinder head 19. Service jobs on the thermostat can be easily performed when the motorcycle is in parked position since the motorcycle 10 is inclined at a leftward side thereof when the motorcycle 10 is parked using a stand (not shown) disposed on the left side of the motorcycle 10.
An outlet side of the water pump 22 is fluidly connected (i.e., establishes a fluid communication) with a coolant inlet port of the water jacket 24 formed in the cylinder head 19 via a first hose 31. An upper body 32 of the thermostat housing 27 is fluidly connected with an upper tank (upstream side tank) 34 of the radiator 18 via a second hose 33. A lower tank (downstream side tank) 35 of the radiator 18 is fluidly connected with an inlet side of the water pump 22 via third hose 36. The lower body 28 of the thermostat housing 27 is fluidly connected with the inlet side of the water pump 22 via a fourth hose 37.
A siphon tube 39 of the radiator 18 is fluidly connected with a reservoir tank 40 disposed forwardly and on left side of the engine 19.
The oil cooler 23 is connected to a coolant inlet port 41 that is fluidly connected with the outlet side of the water pump 22 via a fifth hose 42. Further, the oil cooler 23 is connected to a coolant outlet port 43 that is fluidly connected with a connector 45, disposed in an approximately midway of the third hose 36, via a sixth hose 44.
As shown in
In the coolant circulation path, as discussed above, the thermostat 26 is closed when the engine 16 is started cold, and the coolant temperature remains low before engine warm-up. Accordingly, the coolant circulates through the water pump 22, the first hose 31, the water jacket 24 of the cylinder head 19, the coolant outlet port 25, the lower body 28 of the thermostat housing 27, and back in the water pump 22.
When the engine 16 is warmed up with the lapse of time after the engine 16 has been started, the thermostat opens after the coolant temperature reaches a predetermined value (for example, a set predetermined temperature of the thermostat 26 at 70° C. to 85° C.). When the thermostat is in open position, the coolant circulates through the water jacket 24 formed in the cylinder head 19, the coolant outlet port 25, the lower body 28 of the thermostat housing 27, the upper body 32 of the thermostat housing 27, the second hose 33, the upper tank 34 of the radiator 18, the lower tank 35 of the radiator 18, the third hose 36, and the water pump 22, such that the temperature of the coolant in the water jacket 24 is maintained at the predetermined value.
Referring to
Moreover, as it can be seen from
Referring to
The engine side connector 51 includes a tube having a nut portion 54, a threaded portion 55, and a hollow portion 56. In order to dispose the air bleed member 47 in the air bleed hole 46, the nut portion 54 is turned with a tool, for example, a wrench or the like. This causes the threaded portion 55 to be screwed into the air bleed hole 46, so that the engine side connector 51 is secured in the cylinder head 19, as shown in
The tube side connector 52 is formed into a cylinder integrated with an inside of the nut portion 54. The air bleed tube 48 is externally fitted over the tube side connector 52.
The jiggle valve 53 is incorporated in a valve seat 57 disposed in the hollow portion 56 of the engine side connector 51. During coolant changing/replacing operation, the jiggle valve 53 opens relative to the valve seat 57 when air is sent from the water jacket 24 into the hollow portion 56 of the engine side connector 51, so that air is sent towards the air bleed tube 48 and out into the atmosphere. When the coolant is thereafter supplied to the water jacket, the jiggle valve 53 closes relative to the valve seat 57.
The air bleed member 47 is screwed into the air bleed hole 46 formed vertically in the protrusion 50 of the sidewall 49 rearward of the cylinder head 19, between the intake ports 21. Accordingly, the air bleed member 47 is disposed such that it longitudinally extends parallel to the axis of the cylinder head 19.
As shown in
When the coolant is introduced through the coolant inlet port 41 and delivered to the sixth hose 44 from the coolant outlet port 43, the oil cooler 23 functions to increase fluid pressure by decreasing a flow rate of the coolant because of the inside diameter D1 of the coolant outlet port 43 is greater than the inside diameter D2 of the coolant inlet port 41. The coolant then flows via a piping path throttled down by the inclined portion 61 of the coolant introductory portion 60 in the connector 45 through the sixth hose 44 so as to be smoothed to eventually reach the hose communication portion 59. As such, there is no possibility that any cavitation will occur in the coolant that flows via the oil cooler 23. At the same time, corrosion that would otherwise occur near the bent portion 58 can be prevented. All this contributes to a thinner wall thickness of the pipe, thus enhancing reduction in weight.
In the coolant air bleed structure for the water-cooled internal combustion engine according to the illustrative embodiment of the present invention, as described above, the air bleed member 47 including the jiggle valve 53 is open when air is supplied during a coolant changing/replacing operation to release the air from the engine 16. When the coolant is thereafter fed in (i.e., changed/replaced), the air bleed member 47 is closed and remains closed during normal operation of the vehicle. This eliminates the need for loosening the bolt as required for the conventional air bleed member, thus improving serviceability of the vehicle with regard to routine maintenance thereof.
Further, the air bleed member 47 is disposed at the vertical central portion of the cylinder head 19. As compared with the prior art arrangement, in which the air bleed member is disposed at the upper portion of the cylinder head, the engine 16 can be built compactly vertically and appearance of the engine body can be improved.
In the above-described coolant air bleed structure for the water-cooled internal combustion engine, the air bleed member 47 is disposed between the intake ports of the water-cooled internal combustion engine 16 having the plurality of cylinders with an inclined cylinder axis and the plurality of intake ports 21 disposed on a distal side of the inclination direction. The air bleed member 47 is disposed in the dead space between the ports, which is less noticeable in terms of appearance of the engine. Also, with such disposition of the air bleed member, a compact engine body can be achieved.
In the above-described coolant air bleed structure for the water-cooled internal combustion engine, the air bleed member 47 is disposed in the protrusion 50 formed on the sidewall 49 of the cylinder head 19. The air bleed member longitudinally extends parallel to the axis of the cylinder head 19. The air bleed member 47 is therefore disposed in a position not protruding, i.e., not extending from the sidewall 49 of the cylinder head 19. Therefore, further more compact engine body can be achieved.
Although the present invention has been described herein with respect to a number of specific illustrative embodiments, the foregoing description is intended to illustrate, rather than to limit the invention. Those skilled in the art will realize that many modifications of the illustrative embodiment could be made which would be operable. All such modifications, which are within the scope of the claims, are intended to be within the scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-236095 | Aug 2006 | JP | national |