Coolant Circuit for an Internal Combustion Engine

Information

  • Patent Application
  • 20150275742
  • Publication Number
    20150275742
  • Date Filed
    June 12, 2015
    9 years ago
  • Date Published
    October 01, 2015
    9 years ago
Abstract
A coolant circuit is provided for an internal combustion engine having a compression machine for intake air. The coolant circuit includes a high-temperature circuit and a low temperature circuit. The high-temperature circuit is provided in order to cool the internal combustion engine by way of a coolant radiator and a first coolant pump arranged in the high-temperature circuit. The low-temperature circuit is provided with a second coolant pump in order to cool the intake air compressed by the compression machine by way of an intercooler and in order to cool a coolant of a coolant circuit in a condenser. The high-temperature circuit and the low-temperature circuit are cooling circuits which are separated from each other. The thermal base load of the low-temperature circuit is reduced by this design, whereby the pressure level in the coolant circuit can be reduced resulting positively in a reduction of the energy consumption.
Description
BACKGROUND AND SUMMARY OF THE INVENTION

The invention relates to a coolant circuit for an internal combustion engine comprising a compression machine for intake air, with the coolant circuit consisting of a high-temperature circuit and a low-temperature circuit, and with the high-temperature circuit being provided to cool the internal combustion engine by way of a coolant radiator and a first coolant pump arranged in the high-temperature circuit.


German unexamined patent application DE 41 04 093 A1 discloses a cooling system for vehicles with internal combustion engines, which includes a plurality of coolant circuits with associated heat exchangers that are designated as follows: the first heat exchanger cools the engine coolant, the second cools the engine lubricant, and the third cools the charge air. Temperature sensors are arranged in each coolant circuit and are connected to an electrical switching device. The switching device is connected to actuating elements that control the performance of the heat exchangers as a function of the signals from the temperature sensors. The cooling system is characterized in that a first control unit is provided which includes at least one microprocessor and determines the required cooling energy demand of the individual coolant circuits as a function of the signals from the temperature sensors, and in that actuating elements are assigned to each of the coolant circuits to individually influence the performance of the respective heat exchanger.


The known prior art has the disadvantage that parasitic heat flow from the engine compartment of the vehicle and from an exhaust turbocharger heats up the low-temperature circuit even under low load conditions. This results in an excessive temperature level in each temperature circuit. The result is excessive energy consumption, including in the air conditioning system that controls the temperature in a passenger compartment.


The object of the present invention is to provide a measure to avoid the afore-mentioned disadvantages.


This and other objects are achieved according to the invention by providing a completely separate low-temperature circuit from the high-temperature circuit, with the intercooler and the condenser being arranged in the low-temperature circuit.


This results in a complete separation of the high-temperature circuit for the coolant that cools the internal combustion engine from the low-temperature circuit that indirectly cools the charge air and air conditions a passenger compartment.


According to a further development of the invention, the intercooler and the condenser are preferably arranged in parallel in the low-temperature circuit, e.g. the coolant flows in parallel through both.


Further, a first valve is arranged upstream of the intercooler in the direction of flow of a coolant, and/or a second valve is located upstream of the condenser. This results in several advantageous synergy effects, which is shown in a table below. In a further example of an embodiment, the valves may also be located downstream of the intercooler and/or the condenser, or an intermix of said arrangements.


Preferably, the valves are operated in a regulated or controlled fashion.


Furthermore, the second coolant pump is preferably operated at a speed that meets the operating conditions so as to ensure optimal efficiency.


With the coolant circuit according to the invention for an internal combustion engine, the following operating situations can then be described advantageously as a function of the operating condition of the internal combustion engine (ICE):
















Operating
Second





point
coolant
First
Second



of the ICE:
pump:
valve:
valve:
Comment:







e.g.: at idle
controlled
closed
open
High demand for air



by


conditioning at idle, for



demand


example during stop-and-go






traffic at high outside air






temperature. In this case,






increase of the coolant flow






over the condenser, and






reduction of the cooling of the






charge air, or valve timing, if






applicable.


e.g.: Max.
controlled
open
closed
High demand on charge air


load on a
by


cooling with simultaneously


restricted
demand


low air conditioning demand,


access



such as during moderate


highway



outside temperatures and high


[Autobahn]



demand driving (e.g. restricted






access highway, dynamic






mountain driving)


Max. air
controlled
open
open
High demand driving resulting


conditioning
by


in high cooling need of the


and max.
demand


intercooler. Simultaneously


load of



high outside air temperature


internal



and high air conditioning


combustion



demand.


engine









Due to the design of the cooling circuit according to the invention, parasitic heat intake is reduced and, therefore, the thermal base load of the low-temperature cooling circuit is reduced. This leads to a reduction of the pressure level in the refrigeration cycle, which results in a positive reduction of the total energy consumption.


Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawing.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a block diagram of a cooling circuit according to an embodiment of the invention for an internal combustion engine





DETAILED DESCRIPTION OF THE DRAWING


FIG. 1 shows a block diagram of a cooling circuit according to an embodiment of the invention for an internal combustion engine 1 with a compression machine 2; the present exemplary embodiment shows a compressor of an exhaust turbocharger to compress intake air for the internal combustion engine. It goes without saying that this can also be a mechanical charger.


The entire coolant circuit consists of a high-temperature circuit 3 and a low-temperature circuit 4.


In the high-temperature circuit 3, a coolant radiator 5 is provided to cool the internal combustion engine 1, and a first coolant pump 6 is provided, which is arranged in the high-temperature circuit 3. The intake temperature into the internal combustion engine can be regulated and/or controlled with the help of a thermostatic valve 14. A direction of flow of the coolant is shown schematically in FIG. 1 by way of arrows. Furthermore, a fan 13 is provided to improve the cooling efficiency of the coolant radiator 5.


Furthermore, the low-temperature circuit 4 includes a second coolant pump 7 as well as a second coolant radiator 12 to cool the intake air that has been compressed by the compression machine 2 by way of an intercooler 8. Additionally, the low-temperature circuit 4 includes a condenser 9 to cool a refrigerant of a refrigeration cycle for air conditioning of the passenger compartment.


According to the invention, the high-temperature circuit 3 and the low-temperature circuit 4 are separate circuits. Furthermore, the intercooler 8 and the condenser 9 are arranged in parallel to one another in the low-temperature circuit 4, e.g. the coolant flows through both of them in parallel. In the present embodiment, a first valve 10 is provided in the low-temperature circuit 4 upstream of the intercooler 8 in the direction of flow of the coolant, and a second valve 11 is provided upstream of the condenser 9. In a further embodiment, the valves 10 and 11 may also be arranged downstream of the condenser 9 or the intercooler 8, or they may be arranged in an intermixed order. Preferably, the valves 10 and 11 can be operated in a regulated or controlled manner by an electronic control unit (not shown), such as a motor control device, for example.


Furthermore, the speed of second coolant pump 7 can also be operated via the electronic control unit according to the demand on the system, which means that a high cooling demand sets a high speed and a low cooling demand sets a low speed for the second coolant pump 7. The second coolant pump 7 could be an electrically operated coolant pump, for example.


In the present embodiment, the second coolant radiator 12 is arranged upstream of the coolant radiator 5 with respect to the air flow direction, which is represented schematically by three wide arrows In other embodiments, the coolant radiators may also be arranged to partially overlap, or to be arranged side by side.


With the coolant circuit according to the invention for an internal combustion engine 1, the following operating situations can then be advantageously represented as a function of the operating condition of the internal combustion engine 1:
















Operating
Second





point
coolant
First
Second



of the ICE:
pump:
valve:
valve:
Comment:







e.g.: at idle
Controlled
closed
open
High demand for air



by


conditioning at idle, for



demand


example during stop-and-go






traffic at high outside air






temperature. In this case,






increase of the coolant flow






over the condenser, and






reduction of the cooling of the






charge air, or valve timing, if






applicable.


e.g.: Max.
Controlled
open
closed
High demand on charge air


power on a
by


cooling with simultaneously


restricted
demand


low air conditioning demand,


access



such as during moderate outside


highway



temperatures and high demand


[Autobahn]



driving (e.g. restricted access






highway, dynamic mountain






driving)


Max. air
Controlled
open
open
High demand driving resulting


conditioning
by


in high cooling demand of the


and max.
demand


intercooler. Simultaneously


power of



high outside air temperature and


internal



highair conditioning demand.


combustion






engine









Due to the design of the cooling circuit according to the invention, parasitic heat intake is reduced, and therefore the thermal base load of the low-temperature cooling circuit is reduced. This leads to a reduction of the pressure level in the refrigeration cycle, which results in a positive reduction of the total energy consumption.


LIST OF REFERENCE SYMBOLS




  • 1. Internal combustion engine


  • 2. Compression machine


  • 3. High-temperature circuit


  • 4. Low-temperature circuit


  • 5. Coolant radiator


  • 6. First coolant pump


  • 7. Second coolant pump


  • 8. Intercooler


  • 9. Condenser


  • 10. First valve


  • 11. Second valve


  • 12. Second coolant radiator


  • 13. Fan


  • 14. Thermostatic valve



The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

Claims
  • 1. A coolant circuit for an internal combustion engine having a compression machine for intake air, the coolant circuit comprising: a high-temperature circuit; anda low-temperature circuit; whereinthe high-temperature circuit is configured to cool the internal combustion engine via a coolant radiator and a first coolant pump arranged in the high-temperature circuit,the low-temperature circuit comprises a second coolant pump and a second coolant radiator and is configured to cool air compressed by the compression machine via an intercooler and to cool a refrigerant of a refrigeration cycle in a condenser, andthe high-temperature circuit and the low-temperature circuit are separate cooling circuits.
  • 2. The coolant circuit according to claim 1, wherein the intercooler and the condenser are arranged in parallel to one another in the low-temperature circuit.
  • 3. The coolant circuit according to claim 2, wherein the low-temperature circuit further comprises a first valve arranged upstream of the intercooler relative to a flow direction of coolant.
  • 4. The coolant circuit according to claim 1, wherein the low-temperature circuit further comprises a first valve arranged upstream of the intercooler relative to a flow direction of coolant.
  • 5. The coolant circuit according to claim 1, wherein the low-temperature circuit further comprises a second valve arranged upstream of the condenser relative to a flow direction of the coolant.
  • 6. The coolant circuit according to claim 2, wherein the low-temperature circuit further comprises a second valve arranged upstream of the condenser relative to a flow direction of the coolant.
  • 7. The coolant circuit according to claim 3, wherein the low-temperature circuit further comprises a second valve arranged upstream of the condenser relative to a flow direction of the coolant.
  • 8. The coolant circuit according to claim 5, wherein the first and second valves are operatively configured to be regulated or controlled.
  • 9. The coolant circuit according to claim 1, wherein the second coolant pump is configured to operate at a speed tailored to demand.
  • 10. The coolant circuit according to claim 2, wherein the second coolant pump is configured to operate at a speed tailored to demand.
  • 11. The coolant circuit according to claim 3, wherein the second coolant pump is configured to operate at a speed tailored to demand.
  • 12. The coolant circuit according to claim 5, wherein the second coolant pump is configured to operate at a speed tailored to demand.
  • 13. The coolant circuit according to claim 8, wherein the second coolant pump is configured to operate at a speed tailored to demand.
Priority Claims (1)
Number Date Country Kind
10 2012 223 069.6 Dec 2012 DE national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT International Application No. PCT/EP2013/073850, filed Nov. 14, 2013, which claims priority under 35 U.S.C. §119 from German Patent Application No. 10 2012 223 069.6, filed Dec. 13, 2012, the entire disclosures of which are herein expressly incorporated by reference.

Continuations (1)
Number Date Country
Parent PCT/EP2013/073850 Nov 2013 US
Child 14737872 US