The invention relates to a coolant condenser having a network composed of tubes and ribs, collecting tubes arranged on both sides of the network and having a collector which is connected to one of the collecting tubes by means of at least one inflow opening and at least one outflow opening and is arranged in parallel with it, in particular according to the preamble of patent claim 1 or claim 10.
The invention also relates to an insert part for a collector of a condenser of an air-conditioning system for motor vehicles, in particular according to the preamble of patent claim 13.
The condenser which is known from DE-A 197 12 714 by the applicant is what is referred to as a condenser module which is characterized by a collector which is integrated with the condenser. In this context, this collector is of tubular design, is arranged in parallel with one of the two collecting tubes of the condenser and is connected fluidically to the adjacent collecting tube via an inflow opening and an outflow opening. A dryer/filter cartridge is positioned in the collector and is connected in a positively locking and detachable fashion to a closure stopper by means of a latch connection. After the condenser has been soldered, the dryer/filter cartridge is inserted into the collector, which is then sealed in a fluidic and pressure-tight fashion by the closure stopper. The dryer/filter cartridge has a plastic housing with a circumferential sealing lip which is arranged between the inflow opening and the outflow opening and divides the collector into an inflow space and an outflow space. After the coolant flows through the dryer/filter cartridge, it thus passes out of the inflow space into the outflow space and thus back into the network of the condenser. A detailed description of such a condenser module can be found in DE-A 44 02 927 by the applicant. The flow through the dryer/filter cartridge which is filled with granulate causes a considerable drop in pressure for the coolant, which, after it emerges from the condenser, flows through the entire collector until it re-enters the supercooling section of the condenser.
Further designs of dryer/filter cartridges have been disclosed by DE 200 04 438 U1, FR-A 2 750 761 and EP-A 0 921 022. In DE '438 spacer elements are necessary to position the dryer/filter cartridge in the collector. In the dryer/filter cartridge according to EP '022 and FR '761 a dividing wall is necessary in the collector and the lower end of the dryer/filter cartridge is inserted into said dividing wall while the upper end is connected to the closure stopper. A disadvantage with these designs is that the cartridge is relatively long and not easy to handle in terms of installation and removal.
An object of the present invention is to improve a coolant condenser or an insert part of the type mentioned at the beginning in such a way that the number of individual parts for a dryer/filter unit and possibly their costs are reduced, and the installation and removal of the unit are also possibly facilitated.
The means of achieving this object are apparent from the features of the independent claim 1.
The spatial separation of the drying and filtering of the coolant gives rise to a smaller drop in pressure for the coolant which flows through the collector. This reduced pressure loss has a positive effect on the performance of the entire condenser. Furthermore, the drying/filtering function unit is simplified in terms of its design because additional individual parts such as spacer elements are dispensed with. Arranging the closure stopper and the insert which is connected to it in the lower region of the collector, that is to say in the region of the inflow and outflow openings, makes the entire insert shorter.
According to one advantageous refinement of the invention, the insert is of pot-shaped design and embodied as a separate filter unit which is either designed to be clipped to the closure stopper as a mounted unit or is embodied in one piece with it as an injection molded part. The filtering effect is functionally improved insofar as the coolant flows firstly into the interior of the pot-shaped insert, from there radially outwards via filter sieves into an annular space and from there back into the condenser. The arrangement of the filter sieves on the circumference produces a larger filter passage area and thus a smaller drop in pressure for the coolant. Particles of dirt which are held back by the sieve can collect on the bottom of the pot-shaped insert and thus do not block the filter. The manufacturing costs can be reduced by manufacturing the insert and closure stopper as a single-piece injection molded part, whether from plastic or from an aluminum alloy. As a result of the closure stopper being secured in the collector, the insert is simultaneously positioned in the collector, which is significant in particular for the sealing lip since it has to be arranged between the inflow opening and the outflow opening.
According to one advantageous development of the invention, the drying is carried out by means of a small bag of desiccant which is positioned above the filter insert, which is permeable to the coolant and holds a desiccant in granulate form in its interior. This little bag is supported on the edge of the pot-shaped insert so that the cavity in the interior of the filter insert remains free.
Advantageous developments emerge from the features of claims 2 to 9.
A further solution is obtained according to the features of claim 10. Here, the filter insert as a single-piece plastic injected molded part is lengthened to form a dryer cartridge which holds the desiccant in granulate form. It is thus possible to introduce the desiccant and filter from below into the collector as one part with the closure stopper and position it there in its operating position. The upper part of the dryer cartridge, i.e. above the sealing lip, has a relatively large circumferential area which is penetrated by windows and is covered by a relatively large-mesh filter fabric. As a result, relatively large particles of dust remain outside the cartridge. The lower part of the cartridge, i.e. below the sealing lip, also has window-like breakthroughs which are however covered by a relatively fine-mesh filter sieve. The combination of large-mesh and fine-mesh filters reduces the drop in pressure of the cartridge.
According to a further advantageous refinement of the invention, the dryer cartridge with the closure stopper which is manufactured in one piece from plastic, forming the insert part, is sealed with respect to the collector by means of O rings. As a result of the internal pressure in the collector, the closure stopper which is partially of hollow construction is widened somewhat owing to the lower modulus of elasticity of plastic so that the O rings are additionally pressed and the sealing effect is thus increased.
Advantageous developments emerge from the features of claims 11 and 12, and 14 to 23.
The invention is illustrated by way of example in the drawing with reference to exemplary embodiments and is described in more detail below.
The function of the abovementioned dryer/filter unit is as follows: the coolant, represented by an arrow E, enters the inflow space 26 of the collector 21 where it comes into contact with the little bag 28 of desiccant or with the granulate located in the interior of the little bag 28. The coolant flows through and around the bag 28 since the latter does not fill the entire free cross section of the collector 21. The coolant from which moisture has thus been removed then enters the interior space 31 of the insert part 20b. The coolant is present here in the liquid phase and leaves the interior space 31 radially through the filter fabric 29 toward the outside, enters the annular space 27 and flows from there via the outlet opening 25, following the arrow A, into the condenser (not illustrated here) or its collecting tube (not illustrated either). From there, the coolant reaches a supercooling section of the condenser (not illustrated).
The closure stopper 34 can be embodied in a similar way and be attached in the collector as described in the abovementioned DE-A 100 39 260 by the applicant. Here, owing to the construction using plastic which has a lower modulus of elasticity than, for example, aluminum, an additional advantage is obtained: as a result of the internal pressure in the collector which also acts on the interior of the closure stopper 34 which is of partially hollow construction, said closure stopper 34 widens toward the outside, i.e. in the radial direction, so that the O rings (not illustrated here) are pressed somewhat more strongly and thus bring about a better sealing effect.
Overall, there is a favorable drop in pressure for the dryer/filter cartridge 33 because a relatively large and large-mesh filter surface is available in the upper region of the cartridge, i.e. above the sealing lip 37, while a fine-mesh filter is provided in the lower region, i.e. below the sealing lip 37.
Number | Date | Country | Kind |
---|---|---|---|
102 13 176.7 | Mar 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP03/02995 | 3/21/2003 | WO |