The tools of plastic processing machines, but also of die-casting machines, extruders, welding machines and similar systems, where heat is to be dissipated, are cooled point-wise or surface-wise, as soon as the working or processing action demands it. This draws off heat from the tool on one hand in a localized and on the other hand in an overall manner, so that the fastest possible cooling ensues and cycling times are shortened. The invention refers to such a cooling system.
The DE 199 18 428 C1 has made known a tool cooling process based on carbon dioxide (CO2), designed to cool off tool areas with excess temperatures in a localized fashion. The application range of the known process extends, beyond sintered porous materials, to tools made of massive materials such as steel, aluminum, copper or other alloys. One advantage of the known process is seen in its prevention of locally occurring temperature peaks, which allows reducing cycling times and molded piece defects. The known process is characterized by the fact that pressurized carbon dioxide is, through a feeding system, directed to appropriate tool areas so as to cool these areas by a localized expansion of the carbon dioxide. The preferred tool areas are those where owing to excessive tool temperatures shiny spots or shining differences appear on the plastic articles, sagging points occur, deformation occasions problems or where generally excessive and/or tool damaging temperatures may arise. The feeding of compressed carbon dioxide occurs through tiny tubes or flexible hoses. Upon exiting from these feeding tubes, the compressed carbon dioxide expands, thus drawing off heat from the surrounding material. Due to the after-flowing carbon dioxide, the expanded gas is moved through the gap between the feeding tubes and the walls of the expansion chamber out of the tool, so as to enable it to escape into the atmosphere, be captured by a special system and subsequently re-processed. Apart from this surface-wide tool cooling, a water-jetting type cooling is known. The process is based on an open or closed cooling water system, where the tool is provided with flow channels conformed to appropriately fit the processing conditions and the geometry of the work-piece and the tool. This makes it possible to efficiently cool the tool and the injected masses and to substantially reduce the cycling times. However, the use of water as a coolant can lead to calcium scaling deposits in the flow channels, thus lowering the cooling effect.
In the worst cases, channel plugging and total ineffectiveness of the cooling system may occur. Another already known solution is described in DE 102 56 036 A1 as a tool cooling process and device based on the carbon dioxide expansion cooling principle. The known device is characterized by a plurality of boreholes, each of which is penetrated by a capillary tube open at its free extremity. The capillaries are connected with a gas-feeding collection tube, and the boreholes with a gas-collection channel for a gas return loop. However, this known solution fails to indicate how a large number of cooling points, which may possibly also be arranged in a locally distributed manner, may be supplied with a coolant efficiently and with adequate assurance, because a simple parallel arrangement of the capillaries cannot satisfy these requirements.
The task thus resulting for the invention is to create a tool cooling system of the kind mentioned at the beginning, to be distinguished by an improved feeding of the coolant to the cooling points in the form of its distribution, thus leading to enhanced manufacturing process efficiency and better product quality.
In accordance with the teaching of the principal claim, the task is solved by a coolant distribution to the cooling points that consists of a capillary tube connected to a feeding loop and an expansion chamber fitted with a capillary tube inlet and connected to a return loop, so as to allow a coolant conveyed to the cooling points in a liquid state to evaporate and be carried off as a gas. For this purpose, a hermetically sealed distribution block attachable to a coolant source and a coolant sump is fitted with coolant channels carved out in at least one plane and conformed to be capable of being flanged to a tool. The coolant channels are conformed as feeding loops branching out to the cooling points, and as return loops connecting the cooling points to a collector. The coolant feeding occurs from the coolant source to the feeding loops through a hose which is attached to an inlet conformed as a hose coupling, and through at least one magnetic switching unit inserted after the inlet. The coolant discharge from the return loop collector occurs through a hose leading to the coolant sump, while the outlet of the return collector is conformed as a hose coupling to which the hose is attached.
Advantageous improvements and configurations are given in the subordinate claims. The invention is characterized by conformations of the coolant channels that are adaptable to various applications. A first advantageous conformation of the invention consists in the fact that the coolant channels are boreholes inserted into the distribution block, which lead to the cooling points through crossings forming junction points and/or directly to the cooling points, and are hermetically sealed toward the outside. Another advantageous conformation of the invention consists in the fact that the distribution block is made of at least two plates and the coolant channels are conformed as groove-like recesses in at least one plate and covered by another plate. Another advantageous conformation consists in the fact that the coolant channels are realized so that groove-like recesses are carved out in the distribution block, in which the coolant carrying tubes are irremovably disposed. The invention is further improved by attaching at least one magnetic switching unit to the feeding loop, using plug-in connections. The object of the invention further consists in the fact that the capillary tube is fastened to a connecting element fitted with an inlet and outlet, so that the capillary tube is tightly connected by the inlet to the feeding loop, and the expansion chamber is tightly connected by the outlet to the return loop. The invention is advantageously conformed by shaping the connecting element so as to enable it to be plugged into a supporting bushing set into the distribution block.
The characteristics of the invention will in the following be explained in greater detail with the aid of drawings, which show:
In
In
Number | Date | Country | Kind |
---|---|---|---|
102008000452.9 | Feb 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/052340 | 2/27/2009 | WO | 00 | 9/27/2010 |