The present invention relates to a coolant passage device to be used for a cooling device for cooling an internal combustion engine (hereinafter also referred to as an engine) by circulating coolant between a fluid passage formed in the internal combustion engine and a radiator.
This type of cooling device not only cools an internal combustion engine by circulating coolant between a fluid passage formed in the engine and a radiator, but also supplies the coolant to a heater circulation flow path including a heater core for heating. Further, in recent years, a cooling device has been devised that uses the coolant from the engine for an exhaust gas recirculation (EGR) cooler and a throttle body.
Thus, to circulate or supply the coolant to each part as described above, it becomes necessary to use branch pipes to individually connect pipes to each other. Thus, piping in an engine room becomes complicated, and as a result, this causes a problem to occur of lowering maintainability of the engine.
To simplify connection of the pipes, in the following prior art literature disclose that a coolant passage device is directly connected to a coolant discharge port of the engine, accommodates a water temperature sensor, for example, in the device, and in which device connection ports of the pipes are aggregated.
The coolant passage device disclosed in the patent literature has been devised by the applicant of the present invention, and the coolant passage device can be provided in which the whole of the coolant passage device is molded using a synthetic resin, and weight saving and cost reduction can be achieved by utilizing the ease of resin molding. In addition, with the coolant passage device, stress applied to the device can be absorbed and dispersed by the entire device, and it is possible to effectively cope with stress due to thermal expansion of the engine and displacement of a fastening portion due to a difference in thermal expansion coefficient between the engine and the device.
Air bubbles may enter the coolant in a coolant circulation path including the coolant passage device. However, the bubbles mixed in the coolant can be removed by a completely sealed reserve tank connected to a part of the coolant circulation path, for example. However, for example, during warm-up operation immediately after start of the engine, bubble escaping (air escaping) to the reserve tank is poor since the coolant does not circulate through a main cooling pipe passing through the radiator.
For this reason, for example, bubbles remaining at the uppermost portion of the engine tend to flow to a heater core for vehicle interior air conditioning (heating); in a case where coolant containing the bubbles flows through the heater core, abnormal noise (coolant-flowing noise) generated in the heater core leaks into a vehicle interior, and a problem arises where a passenger feels uncomfortable.
In the coolant passage device including a delivery pipe to the heater core, the air bubbles can be prevented from being sent to the heater core by opening a branch port leading to the delivery pipe to the heater core in a bottom portion of the coolant passage device. As a result, the abnormal noise (coolant flow noise) can be prevented from generating in the heater core.
In a case where the branch port to the heater core is provided in the bottom portion of the coolant passage device, however, the delivery pipe to the heater core is inevitably piped toward a lower side of the coolant passage device. In a crowded engine room, workability of maintenance is lowered such as connection or replacement of a hose connected to the heater core from the delivery pipe to the heater core. Thus, it is desirable that the connection ports of the pipes including the delivery pipe to the heater core are disposed facing upward from the coolant passage device, or facing to a lateral direction (horizontal state).
The present invention further improves the previously devised coolant passage device on the basis of the problems as described above and the viewpoint of maintenance. It is an object of the present invention to provide a coolant passage device that enables to effectively prevent bubbles from flowing to a heater core even if coolant containing the bubbles flows into the coolant passage device, and to prevent coolant-flowing noise from generating in the heater core.
The coolant passage device for an internal combustion engine according to the present invention is a coolant passage device that is used in a cooling device for an internal combustion engine forming a coolant circulation flow path between a fluid passage formed in the internal combustion engine and a radiator, and is provided between a coolant outlet portion of the internal combustion engine and a coolant inlet portion of the radiator, the coolant passage device including: a coolant intake pipe that takes in coolant from the internal combustion engine and communicates with a delivery pipe to the radiator; at least a delivery pipe to a heater core branched from a central passage connecting the coolant intake pipe with the delivery pipe to the radiator, wherein a branch port leading to the delivery pipe to the heater core is opened in an upper portion of the central passage in a state where the coolant passage device is mounted to the internal combustion engine, and the branch port has a wall surface surrounding the branch port and hanging down into the central passage, and the wall surface prevents bubbles contained in the coolant from entering the branch port.
In this case, in one preferred embodiment of the coolant passage device, the coolant intake pipe includes a pair of coolant intake pipes that takes in coolant respectively from a pair of engine heads in the internal combustion engine, and the branch port leading to the delivery pipe to the heater core is formed in the central passage formed between the pair of coolant intake pipes.
In another preferred embodiment of the coolant passage device, the branch port leading to the delivery pipe to the heater core is formed in a central passage between a single coolant intake pipe that takes in coolant from an engine head and the coolant delivery pipe to the radiator that communicates with the coolant intake pipe.
It is preferable that the coolant passage device is formed by joining a plurality of resin molded bodies individually molded, and that the coolant intake pipe, the delivery pipe to the radiator, and the delivery pipe to the heater core are integrally molded together in one resin molded body out of the plurality of resin molded bodies.
In the coolant passage device for the internal combustion engine having the above-described structure, the branch port leading to the delivery pipe to the heater core is formed to be opened in the upper portion of the central passage connecting the coolant intake pipe with the delivery pipe to the radiator in a state where the coolant passage device is mounted to the internal combustion engine. The branch port has the wall surface hanging down into the central passage surrounding the branch port. Thus, even if bubbles enter the inside of the coolant passage device, the bubbles can be prevented from entering the heater core by an action of the wall surface surrounding the branch port leading to the delivery pipe to the heater core. As a result, the coolant passage device can be provided that prevents coolant flow noise from occurring in the heater core.
The branch port leading to the delivery pipe to the heater core is formed to be opened in the upper portion of the central passage of the coolant passage device, so that the delivery pipe to the heater core can be formed toward the upper portion of the coolant passage device, or toward the horizontal direction, inevitably. As a result, connection work and replacement work can be facilitated of various rubber hoses connected to the respective pipes aggregated in the coolant passage device, whereby a coolant passage device excellent in maintainability can be provided.
A coolant passage device according to the present invention will be described on the basis of an embodiment illustrated in the drawings. First,
The coolant from the engine head enters a radiator 5 via a coolant feed flow path 4, and the coolant whose heat is released by the radiator 5 flows into a thermostat (T/ST) 7 via a return flow path 6. A housing for accommodating the thermostat 7 is disposed on the upstream side of a water pump (W/P) 8 for feeding coolant to the engine 1, and the coolant is circulated by driving of the water pump 8.
A bypass flow path 9 is formed from the coolant feed flow path 4 to the thermostat 7, and during warm-up operation of the engine 1, the coolant flows to the bypass flow path 9 by a function of the thermostat 7. Further, part of the coolant branched in the coolant passage device 3 enters a heater core 10 that functions as a heat exchanger for indoor heating, and returns to the housing of the thermostat 7 via the heater core 10.
As illustrated in
That is, as shown in
A delivery pipe 18 to a heater core is formed facing upward to communicate with the central passage 16 between the coolant intake pipe 11 in the coolant passage device 3 and the delivery pipe 17 to the radiator. As a result, the coolant discharged from the engine 1 is branched in the coolant passage device 3, and immediately supplied to the heater core 10.
A mounting pipe 19 for a water temperature sensor is formed facing upward at a portion where the other coolant intake pipe 12 in the coolant passage device 3 crosses the central passage 16. The water temperature sensor 20 is mounted fittedly in the axial direction to the mounting pipe 19, and a sensing area at a tip of the water temperature sensor is positioned in the coolant passage device 3. Water temperature information of the coolant obtained from the water temperature sensor 20 is sent to an engine control unit (ECU) (not shown).
The delivery pipe 18 to the heater core is formed in the coolant passage device 3 to face upward in a state where the coolant passage device 3 is mounted to the engine 1. A branch port 18a leading from the central passage 16 of the coolant passage device 3 to the delivery pipe 18 to the heater core, is opened in an upper portion in the central passage 16.
In addition, the branch port 18a has a wall surface 21 surrounding the branch port 18a and hanging down into the central passage 16. As illustrated in
The branch port 18a leading to the delivery pipe 18 to the heater core is formed at a position closer to the rear part from the axial center of the central passage 16. Thus, in
The main members, such as the pair of coolant intake pipes 11 and 12, the delivery pipe 17 to the radiator, the delivery pipe 18 to the heater core, and the water temperature sensor mounting pipe 19 described above, are integrally molded in one resin molded body as a first body B1. A resin molded body as a second body B2 is joined to the first body B1 at a bottom portion of the first body B1, to form the coolant passage device 3. That is, in this embodiment, the second body B2 functions as a kind of a lid member formed in a flat shape closing the central passage 16 at the bottom portion of the first body B1.
In molding the coolant passage device 3 including the first body B1 and the second body B2, a joining method can be used such as die slide injection (DSI) molding. That is, the first body B1 and the second body B2 are separately molded by primary injection, and as it is, dies are slid and the first body B1 and the second body B2 are joined; secondary injection is performed to a joint portion J of the bodies, whereby the coolant passage device 3 having a hollow structure can be molded. The first body B1 and the second body B2 can be joined together by well-known vibration welding instead of using the DSI molding.
With the coolant passage device 3, the branch port 18a leading to the delivery pipe 18 to the heater core is formed to be opened in the upper portion in the central passage 16, and the branch port 18a has the wall surface 21 surrounding the branch port and hanging down into the central passage 16. Thus, even if bubbles enter the inside of the coolant passage device 3, the bubbles can be prevented from entering the heater core 10 by an action of the wall surface 21 surrounding the branch port 18a. As a result, effects as described in the paragraph of advantageous effects of invention can be obtained, and for example, coolant flow noise can be prevented from occurring in the heater core 10.
In the second embodiment, a delivery pipe 17 to a radiator is formed in the extension line direction of a central passage 16 to communicate with one end side of the central passage 16, that is, a crossing portion of the central passage 16 and a coolant intake pipe 12 as illustrated in
As shown in
That is, also in the second embodiment, the structure of the wall surface 21 formed to the branch port 18a leading to the delivery pipe 18 to the heater core is substantially the same as the structure in
Also in the second embodiment, the main members, such as the pair of coolant intake pipes 11 and 12, the delivery pipe 17 to the radiator, the delivery pipe 18 to the heater core, a water temperature sensor mounting pipe 19, the delivery pipe 23 to the throttle body, and the delivery pipe 24 to the EGR cooler, are integrally molded in one resin molded body as a first body B1. A second body B2 is formed in a flat shape to close the central passage 16 at a bottom portion of the first body B1. Thus, the coolant passage device 3 having the hollow structure can be molded by utilizing the DSI molding.
The first embodiment (
The third embodiment includes: a single coolant intake pipe 11 that takes in coolant from an engine head; and a flange-shaped fastening portion (flange) 13 surrounding an opening of the coolant intake pipe 11. The flange-shaped fastening portion 13 includes a pair of bolt insertion holes 15 for fastening the coolant passage device 3 to the engine head of the in-line type engine, at both outer sides of the coolant intake pipe 11 as the center of the holes.
A delivery pipe 17 to a radiator is formed toward the horizontal direction via a central passage 16 bent with respect to the coolant intake pipe 11. That is, a bending angle of the central passage 16 connecting the coolant intake pipe 11 with the delivery pipe 17 to the radiator is a slightly obtuse angle as illustrated in
A delivery pipe 18 to a heater core is formed facing upward to communicate with the central passage 16, in the bent central passage 16 between the coolant intake pipe 11 and the delivery pipe 17 to the radiator. As a result, the coolant discharged from an engine 1 is branched in the coolant passage device 3, and immediately supplied to a heater core 10.
A mounting pipe 19 for the water temperature sensor 20 is formed toward the horizontal direction on a side wall of the coolant intake pipe 11. That is, as illustrated in
Also in the third embodiment, the structure of the wall surface 21 applied to the branch port 18a leading to the delivery pipe 18 to the heater core is substantially the same as the structure of the first embodiment (the structure illustrated in
Although the first embodiment (
Number | Date | Country | Kind |
---|---|---|---|
2015-176439 | Sep 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/073978 | 8/17/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/043271 | 3/16/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5666911 | Gohl et al. | Sep 1997 | A |
20060006641 | Hada | Jan 2006 | A1 |
20100186925 | Suzuki et al. | Jul 2010 | A1 |
20110265739 | Watanabe | Nov 2011 | A1 |
20110284182 | Inoue | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
1630016 | Mar 2006 | EP |
2034155 | Mar 2009 | EP |
2187160 | May 2010 | EP |
2009-85584 | Apr 2009 | JP |
2009-108812 | May 2009 | JP |
2010-196571 | Sep 2010 | JP |
2011-231722 | Nov 2011 | JP |
WO-2010098068 | Sep 2010 | WO |
Entry |
---|
Extended (supplementary) European Search Report dated Dec. 19, 2018, issued in counterpart European Application No. 16844134.3. (6 pages). |
International Search Report dated Nov. 1, 2016, issued in Counterpart of International Application No. PCT/JP2016/073978 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20180252148 A1 | Sep 2018 | US |