1. Field of the Invention
This invention relates to the field of power generating systems, and more specifically to a coolant system for a vehicular hybrid power system.
2. Description of the Prior Art
A typical vehicular hybrid power system utilizes both a battery stack and a generator engine assembly to develop electrical power. The battery stack can typically be charged from either the generator engine assembly or from shore power. The hybrid system can be used, for example, to generate electrical power for a vehicle such as a recreational vehicle (RV). When utilizing such a hybrid power system onboard a vehicle, problems can arise with the need for cooling the hybrid power system components. Manufacturing costs, maintenance costs, and space requirements are factors that need to be optimized for such a system.
A vehicular hybrid power system generally includes an engine driven electrical power generator and a bank of batteries to provide a dual source of electrical power, and a power conversion assembly such as, but not limited to, an inverter for converting DC power to AC power. The present invention provides a cooling system that includes a coolant tank operatively coupled to both the generator engine and the inverter assembly. The coolant tank performs a dual function by acting as a generator engine coolant overflow reservoir and as an expansion and pressure head tank for an inverter assembly cooling circuit. The cooling system further employs access to cooling air provided by the engine driven electrical power generator with a heat exchanger and a liquid coolant pumping system to transfer cooling liquid via hoses between the inverter assembly and the engine driven electrical power generator.
The liquid coolant pumping system is turned off during modes when it is unnecessary to cool the inverter assembly, as the inverter assembly is a parasitic load to the available user electrical power. If no coolant is available for pumping, energy management system controls provide a warning or fault condition depending upon predetermined temperatures. The liquid coolant pumping system is turned on whenever predetermined temperatures in the inverter assembly reach desired temperature threshold values.
Other aspects, features and advantages of the present invention will be readily appreciated as the invention becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing figures wherein:
While the above-identified drawing figures set forth particular embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modification and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
In one embodiment, engine generator unit 105 can include a variable speed engine 130 and be designed to deliver a desired amount of energy. Generator engine 130 receives fuel such as diesel, natural gas or liquid propane vapor through an intake. Generator engine 130 is coupled to an alternator (not shown) such that as a crankshaft is rotated by the operation of engine generator 130, the crankshaft drives the alternator which, in turn, converts the mechanical energy generated by generator engine 130 to electrical power for transmission and distribution throughout the RV 100.
Cooling system 110 further includes a radiator 202 operatively connected to generator engine 130 such that engine coolant from generator engine 130 circulates through radiator 202 during operation of generator engine 130. Air passes over the radiator 202 so as to effectuate a heat exchange between generator engine coolant flowing through radiator 202 and the air. In order to draw air over radiator 202, cooling system 110 can include a fan (not shown) to draw air across radiator 202 so as to cool generator engine 130 and the engine coolant flowing through the radiator 202.
Battery bank 120 can include any desired number, typically six or more 12V batteries located at a rear portion of the RV 100. These batteries deliver, for example, a nominal 12 V DC to power converter/inverter assembly 140 which converts the DC to AC power to help power the energy load required by RV 100, along with the energy supplied via the engine generator unit 105. The power from inverter assembly 140 and the engine generator unit 105 is managed by an energy management system control assembly 142 that helps store, manage, and deliver the energy load requirements of the RV 100.
A hybrid power system such as depicted in
Engine generator cooling system 150 generally includes generator engine radiator 202, heat exchanger 204, a coolant pump 206, and a coolant tank 208. Engine generator cooling system 150 is designed such that the single coolant tank 208 is operatively coupled to both the generator engine 130 and the inverter assembly 140 such as depicted in
In one embodiment, for example, coolant flows in a first cooling circuit between generator engine 130 and generator engine radiator 202 with coolant overflow being directed to coolant tank 208 via an overflow hose 207. In a second cooling circuit, coolant to the inverter assembly 140, such as depicted in
In one embodiment, coolant pump 206 is positioned below coolant tank 208 such that pump 206 has a head pressure when the pump 206 is first turned on. The location of pump 206 thus facilitates system filling via a non self-priming pump.
Heat exchanger 204 receives coolant from the pump 206. A fan 309, shown in
Accordingly, coolant tank 208 performs a dual purpose by acting as a generator engine coolant overflow for the generator engine cooling circuit and acting as an expansion and pressure head tank for the inverter assembly cooling circuit.
In one embodiment, upstream coolant return hose 154 includes a coolant trap 210. For example, return hose 154 can include an excess length of hose in order to form a trap for the coolant, such as a J-trap. Trap 210 can contain the amount of fluid available to the generator engine 130 suitable for testing purposes. This allows the generator engine 130 to be tested before shipping, and then if any coolant is sloshed out of the tank 208 and into the coolant hose 154 during shipping, the trap 210 will contain the coolant. On the other hand, heat exchanger 204 acts a trap downstream of tank 208. Accordingly, an operator at the OEM should see little if any coolant liquid upon removal of hose plugs that may be employed as a maintenance feature associated with coolant hoses 152, 154. Accordingly, the engine generator cooling system 150 includes means to utilize overflow functions and to maintain a dry header tank for assembly and testing purposes.
Tank 208 includes enough volume in the second coolant chamber 406 to allow for expansion of the volume of fluid required by the generator engine 130 (for example, fluid in the generator engine block, radiator 202, and hoses). Thus, as the coolant expands with temperature, the excess fluid enters chamber 406 of the tank 208. If more comes in, it can overflow dam 420 into chamber 404 or merely fill up more of the common volume area 403. However, if any of the inverter assembly cooling circuit coolant hoses leak somewhere in the system, the generator engine 130 will never be without coolant because of chamber 406 and dam 402, since the amount of coolant in chamber 406 will be prevented from entering the inverter coolant cooling circuit though outlet 408. Moreover, extra chamber 406 allows the generator engine 130 to be tested before leaving the plant. This is because the entire system does not need to be filled with coolant, other than just enough to run the generator engine 130. Then as noted above, when an OEM gets the system, the coolant will either be in tank 208 or maybe in the coolant trap 210 discussed above.
In one embodiment, tank 208 includes a cap to seal the tank at a fill port 420. To test the system, tank 208 is pressurized through the overflow hose 207 depicted in
Moreover, referring again to
The above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
4352342 | Cser et al. | Oct 1982 | A |
4510893 | Schweiger et al. | Apr 1985 | A |
4677943 | Skinner | Jul 1987 | A |
4739730 | Jenz et al. | Apr 1988 | A |
5111776 | Matsushiro et al. | May 1992 | A |
5163506 | Attinger et al. | Nov 1992 | A |
5241926 | Sato et al. | Sep 1993 | A |
5255636 | Evans | Oct 1993 | A |
5433175 | Hughes et al. | Jul 1995 | A |
5563802 | Plahn et al. | Oct 1996 | A |
5680833 | Smith | Oct 1997 | A |
6276312 | Summan et al. | Aug 2001 | B1 |
6467286 | Hasebe et al. | Oct 2002 | B2 |
6616059 | Sabhapathy et al. | Sep 2003 | B2 |
6664751 | Gabriel et al. | Dec 2003 | B1 |
6708653 | Lefrancois et al. | Mar 2004 | B2 |
6718916 | Hewkin | Apr 2004 | B2 |
7082905 | Fukuda et al. | Aug 2006 | B2 |
7096683 | Smith | Aug 2006 | B2 |
7147038 | Taguchi | Dec 2006 | B2 |
Number | Date | Country |
---|---|---|
2004-82921 | Mar 2004 | JP |