The cooling system is essential for proper operation of vehicles of many types. Particularly, large trucks (e.g., medium- or heavy-duty trucks) rely heavily on the cooling system for optimum operation and the protection of the vehicle from overheating.
Because of the complexity of the cooling systems in large trucks, special manufacturing techniques have been developed to fill the cooling system with coolant for operation. Vacuum filling is a particularly useful technique, wherein a vacuum (e.g., 20 torr) is applied to a closed cooling system and coolant is then flushed into the evacuated cooling system. Vacuum filling helps to eliminate detrimental effects, such as trapped air pockets, which arise during traditional filling (e.g., non-vacuum) of a vehicular cooling system.
While vacuum filling of vehicular cooling systems can lead to increased efficiency when charging new vehicular cooling systems with coolant within a manufacturing plant, the vacuum filling technique is not without drawbacks. Particularly, the relatively high vacuum required for the method can lead to stress, strain, and possibly structural failure, of the individual components of the cooling system.
One particular component of a vehicular cooling system that is susceptible to structural failure when subjected to the high vacuum pressures of vacuum coolant filling is the coolant reservoir, which is the entry point for coolant into a vehicular cooling system. The coolant reservoir is traditionally manufactured from an inexpensive and lightweight material, such as blow-molded plastic. Such a plastic is not structurally sufficient to withstand the relatively high vacuum of the vacuum filling technique described above, and rupture of the coolant reservoir may result.
One potential solution to the structural susceptibility to failure of the coolant reservoir is to manufacture the reservoir from a more robust material, such as metal, that would withstand the applied vacuum pressures. However, the coolant reservoir is not a vital component in the cooling system and, after charging of the cooling system with coolant, the coolant reservoir is used very lightly, and only under standard temperatures and pressures (i.e., the coolant reservoir does not need to withstand further vacuum pressures after the cooling system has been charged with coolant). Thus, investing additional manufacturing cost into designing, implementing, and manufacturing a more robust coolant reservoir is not a financially viable option for a manufacturer because significant additional cost would be invested for a benefit that is not passed on to the end customer. For example, a customer does not require a metallic coolant reservoir and would not likely want to pay a premium for such a component when its only benefit is to allow the manufacturer to use a vacuum coolant filling process.
A second option for overcoming the structural failure of the coolant reservoir during vacuum filling is to remove the coolant reservoir prior to vacuum filling. However, during a typical large-truck manufacturing process, the coolant reservoir is attached to the cooling system prior to the step of charging the cooling system with coolant. Thus, for the coolant reservoir to be removed prior to charging of the cooling system, additional labor and inefficiencies would be generated when detaching the coolant reservoir, filling the cooling system, and then reattaching the coolant reservoir.
What is desired, therefore, is a practical solution that would allow for vacuum filling of a cooling system with coolant that allows manufacturers to continue to use inexpensive (e.g., blow-molded polymer) coolant reservoirs while taking full advantage of the vacuum coolant filling technique. And to perform such an action in the typically small amount of time allotted on a production line for filling a cooling system (e.g., less than 5 minutes).
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The embodiments disclosed herein provide a solution to the problem experienced when vacuum filling a cooling system of a vehicle with coolant, wherein the cooling system includes a coolant reservoir that does not possess the structural integrity (e.g., a reservoir made from plastic, such as a blow-molded plastic) to withstand the pressures of the vacuum filling without rupture. In the disclosed embodiments, a bypass fill tool and method for using the fill tool are provided. The fill tool provides liquid communication between the vacuum filling system and the vehicular cooling system while passing by the structurally weak coolant reservoir.
The fill tool is manufactured from a material, such as a metal, that is capable of withstanding the vacuum pressures of the vacuum fill process. The fill tool bypasses the coolant reservoir during the vacuum filling process, allowing the vehicular cooling system to be filled with the vacuum filling process while allowing inexpensive plastic to be used for manufacturing the coolant reservoir.
The foregoing aspects and many of the attendant advantages of embodiments provided herein will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
A fill tool is provided that is useful for bypassing a coolant reservoir of a vehicular cooling system during vacuum filling of the cooling system with coolant (also referred to herein as “charging” the cooling system with coolant). Because blow-molded polymer coolant reservoirs, which are typically used as coolant reservoirs in large trucks, are susceptible to structural failure (e.g., rupture) during vacuum coolant filling, the provided fill tool bypasses the coolant reservoir and allows for gaseous and liquid communication between a source of vacuum pressure and a source of coolant (e.g., a vacuum coolant filling apparatus) and the vehicular cooling system.
Referring to
The fill tool 100 is formed from a material capable of withstanding the pressures of vacuum coolant filling (e.g., a vacuum pressure of 20 torr/29.13 in Hg and a filling pressure of 50 psig). Typical materials for fabricating the fill tool 100 include metals (e.g., stainless steel), structurally robust polymers, and combinations thereof. The fill tool 100 includes an elongated hollow member 105. In a representative embodiment, the hollow member 105 is a tubular hollow member. The hollow member 105 includes a distal end 110 at the tip of the fill tool 100. The distal end 110 is configured to be received in an inlet 220 of the vehicular cooling system (not illustrated), to which the fill tool 100 is attached during vacuum filling of coolant.
The fill tool 100 including the hollow member 105 and distal end 110 is in liquid communication with a vacuum fill apparatus (not illustrated) through a channel at a proximal end 115. The proximal end 115 may be a single channel connecting the hollow member 105 to the vacuum coolant filler (not illustrated), or may include several of the following structural features: Valves, braided steel flexible tubular portions, hoses, and connectors/fittings that provide linkages between any of the provided components.
In a representative embodiment, the coolant reservoir 200 is manufactured from a blow-molded polymer such as \polypropylene, polyethylene (e.g., HDPE), acrylonitrile butadiene-styrene (ABS), polyphenylene oxide (PPO), and polyethylene terephthalate (PET). A coolant reservoir 200 made from metal, or any other material, is also contemplated. The coolant reservoir 200 includes a coolant reservoir body 205, a coolant reservoir inlet 210, and a coolant reservoir outlet 215. As illustrated in
In an exemplary embodiment, the fill tool 100 is about 10″ long and ¾″ in diameter. A 12″ stainless steel braided line ½″ in diameter connects the fill tool 100 to a vacuum coolant filler.
Referring to
In the illustrated embodiment of
Additionally illustrated in
It will be appreciated by those of skill in the art that several means for sealably attaching the distal end 110 of the fill tool 100 to the vehicular coolant system inlet port 220 are contemplated. Friction and the dimensions of the fill tool 100 and coolant reservoir 200 are used in the embodiment illustrated in
Referring to
The embodiment of the fill tool 300 illustrated in
A coolant reservoir outlet gasket 345 provides additional structure for facilitating sealing between the vehicular cooling system inlet port 220 and the fill tool 300. The distal end 310 of the fill tool 300 is inserted through the coolant reservoir outlet gasket 345 until the coolant reservoir outlet gasket 345 abuts the flange 340.
Referring to
In another embodiment, illustrated in
In
In
It will be appreciated that there are several mechanisms suitable for utilizing an expandable seal 525 integrated with a fill tool 500. In the embodiment of
In an exemplary embodiment, the fill tool 500 is about 10″ long and ¾″ in diameter. A 12″ stainless steel braided line ½″ in diameter connects the fill tool 100 to a vacuum coolant filler. The fill tool 500 can fill a vehicular cooling system in less than five minutes on a vehicle assembly line. Known methods are not capable of achieving such an efficient filling time.
In an exemplary use of the fill tool 500 to bypass a coolant reservoir 200 during vacuum filling of a vehicular cooling system with coolant, a new vehicle on an assembly line arrives at a work station for charging with coolant. The fill tool 500 is inserted into the empty coolant reservoir 200. The distal end 510 is manually inserted into the coolant reservoir outlet 215 and the fill tool cap 516 is tightened onto the coolant reservoir inlet 210. The previous steps are performed with the expandable seal 525 in a radially contracted position, such as that of
In the embodiments disclosed herein, the fill tool has a proximal end configured to attach to a source of coolant and a source of vacuum pressure. As described above with regard to
In another aspect, a system for vacuum filling a vehicular coolant system is provided. In one embodiment, the system includes a source of coolant and a source of vacuum pressure (e.g., combined in a vacuum coolant filler); and a fill tool for bypassing a coolant reservoir during vacuum filling of the vehicular cooling system with a liquid coolant from the source of coolant, the fill tool being in liquid communication with the source of coolant and the source of vacuum, and comprising an elongated hollow member configured to pass through the coolant reservoir, the hollow member including a distal end and a proximal end, the distal end being configured to form an airtight seal with an inlet port of the vehicular cooling system, and the proximal end being attached to the source of coolant and the source of vacuum pressure.
The system provided is similar to the fill tool described above, with the additional inclusion of the vacuum coolant filler attached to the proximal end of the fill tool.
In the embodiments provided herein, typical pressure ranges used during the vacuum-filling process are from −30 to 50 psi.
In a further embodiment, the system includes the vehicular coolant system comprising the coolant reservoir, which includes a coolant reservoir inlet and a coolant reservoir outlet, wherein the coolant reservoir outlet is in liquid communication with the coolant system inlet port.
In another aspect, a method is provided for vacuum filling a vehicular cooling system with coolant. In one embodiment, the method includes the steps of providing a vehicular cooling system comprising a coolant reservoir having a coolant reservoir inlet and a coolant reservoir outlet, the coolant reservoir outlet being in liquid communication with a cooling system inlet port; providing a source of coolant; providing a source of vacuum pressure; providing a fill tool, comprising an elongated hollow member configured to pass through the coolant reservoir of the vehicular cooling system, the hollow member including a distal end and a proximal end, the distal end being configured to form an airtight seal with an inlet port of the vehicular cooling system, and the proximal end being attached to the source of coolant and the source of vacuum pressure; attaching the fill tool to the vehicular cooling system inlet port by passing the elongated hollow member through the coolant reservoir inlet and coolant reservoir outlet to form an airtight seal between the distal end and the inlet port; applying a vacuum from the source of vacuum pressure to the cooling system inlet port through the fill tool; and delivering coolant from the source of coolant to the cooling system inlet port through the fill tool.
The method has been described above with regard to the provided fill tool and system for vacuum filling a vehicular cooling system. The fill tool and system are both used in the provided methods and the above descriptions are applicable to the methods described herein.
The method begins with the step of providing a vehicular cooling system comprising a coolant reservoir having a coolant reservoir inlet and a coolant reservoir outlet, the coolant reservoir outlet being in liquid communication with a coolant system inlet port. As described above, the vehicular coolant system includes a coolant reservoir attached to an inlet port of the vehicular coolant system.
The method continues with the steps of providing a source of coolant and a source of vacuum pressure. These sources can be separately provided, or provided by a single apparatus, as described above.
The method continues with the step of providing a fill tool, comprising an elongated hollow member configured to pass through the coolant reservoir of the vehicular cooling system, the hollow member including a distal end and a proximal end, the distal end being configured to form an airtight seal with an inlet port of the vehicular cooling system, and the proximal end being attached to the source of coolant and the source of vacuum pressure. The fill tool useful in the method has been described above in detail.
The method continues with a step of attaching the fill tool to the vehicular cooling system inlet port by passing the elongated hollow member through the coolant reservoir inlet and coolant reservoir outlet to form an airtight seal between the distal end and the inlet port. The embodiments disclosed herein bypass the coolant reservoir so as to utilize vacuum filling of coolant in a vehicular cooling system. Thus, this step describes the insertion of the fill tool through the coolant reservoir by way of passing through the coolant reservoir inlet and the coolant reservoir outlet after which the fill tool is attached to the cooling system inlet port.
The method concludes with the steps of applying a vacuum from the source of vacuum pressure to the cooling system inlet port through the fill tool; and delivering coolant from the source of coolant to the cooling system inlet port through the fill tool. After the fill tool is attached to the cooling system inlet port, the source of vacuum pressure can be operated, and vacuum pressure is applied to the cooling system directly through the fill tool without exposing the coolant reservoir to the vacuum pressures of the process. Once evacuated, coolant is filled into the cooling system from the source of coolant.
In one embodiment, the vehicular cooling system is void of coolant prior to performing the provided method. In an exemplary embodiment, the coolant system is void of coolant during the assembly of a newly manufactured vehicle, and the method can be performed in the vehicle manufacturing environment (e.g., at a manufacturing plant).
In one embodiment, the fill tool further comprises a spring configured to press the elongated hollow member towards the inlet port of the vehicular coolant system. In a further embodiment, the fill tool further comprises a coolant reservoir cap through which the elongated hollow member passes, said coolant reservoir cap being freely movable in rotatable and longitudinal directions with relation to the elongated hollow member; wherein the elongated hollow member comprises a flange; and wherein the elongated hollow member fits through the spring longitudinally such that a first end of the spring abuts the flange and a second end of the spring abuts the coolant reservoir cap. Similar embodiments are additionally contemplated for the methods and systems disclosed herein.
While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2660357 | Fechheimer | Nov 1953 | A |
2898953 | Berthelsen et al. | Aug 1959 | A |
3580299 | Alkalay et al. | May 1971 | A |
3870089 | Laub, III | Mar 1975 | A |
4889149 | Weaver et al. | Dec 1989 | A |
4911211 | Andersen | Mar 1990 | A |
4949765 | Creeron | Aug 1990 | A |
4976296 | Pope | Dec 1990 | A |
5131497 | Rogers | Jul 1992 | A |
5511590 | Turcotte | Apr 1996 | A |
5573044 | Mechalas | Nov 1996 | A |
5573045 | Akazawa | Nov 1996 | A |
5649574 | Turcotte | Jul 1997 | A |
5673733 | Turcotte | Oct 1997 | A |
6360790 | Klamm et al. | Mar 2002 | B1 |
6584994 | Knowles | Jul 2003 | B2 |
6588445 | Knowles | Jul 2003 | B2 |
6742535 | Knowles | Jun 2004 | B1 |
6959717 | Knowles | Nov 2005 | B2 |
7213619 | Awad | May 2007 | B2 |
7316363 | Hume et al. | Jan 2008 | B2 |
20110240173 | Brandt et al. | Oct 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110277875 A1 | Nov 2011 | US |