The invention relates generally to steam turbines and more specifically to exhaust hoods for steam turbines.
In the discharge of exhaust steam from an axial flow turbine, for example discharge of this exhaust steam to a condenser, it is desirable to provide as smooth a flow of steam as possible and to minimize energy losses from accumulation of vortices and turbulences and non-uniformity in such flow. Usually the exhaust from the turbine is directed into an exhaust hood and from there to through a discharge opening in the hood in a direction essentially normal to the axis of the turbine into a condenser. It is desirable to achieve a smooth transition from axial flow at the exhaust of the turbine to radial flow in the exhaust hood and thence a smooth flow at the discharge opening of this hood into the condenser.
In the constructing of an effective exhaust hood for use with such an axial flow turbine it is desirable to avoid acceleration losses within any guide means employed therein and to achieve a substantially uniform flow distribution at the discharge opening of the exhaust hood for the most efficient conversion of energy in the turbine and effective supplying of exhaust steam to the condenser to which it is connected.
It is also desirable to achieve optimum efficiency at the last stage buckets of the turbine prior to exhaust from the turbine by achieving a substantially uniform circumferential and radial pressure distribution in the exit plane of the last stage buckets. Finally, it is desirable to accomplish these results while employing a hood having as short an axial length as possible.
Prior art has employed, in the exhaust hood of the steam turbine, vanes having smoothly curved surfaces for changing the axial flow of the steam from the turbine to the generally radial flow. For example of such an arrangement for converting the axial flow of the exhaust from the turbine to radial flow is shown in U.S. Pat. No. 3,552,877 by Christ et al. Further developments in prior art exhaust hoods for axial flow turbines, such as U.S. Pat. No. 4,013,378 by Herzog, have incorporated multiple sets of vanes for further smoothing flow.
Such arrangements, however have not fully provided for effectively directing of the exhaust steam to the discharge opening of an exhaust hood with reduced acceleration losses and reduced losses resulting from the forming of energy-consuming vortices in the flow of the exhaust steam. Moreover, they have not fully achieved substantially uniform circumferential and radial pressure distribution at the exit plane of the last stage turbine buckets, a consideration which is of increasing importance for buckets having high tip speeds and high exit Mach numbers.
Diffusers are commonly employed in steam turbines. Effective diffusers can improve turbine efficiency and output. Unfortunately, the complicated flow patterns existing in such turbines as well as the design problems caused by space limitations make fully effective diffusers almost impossible to design. A frequent result is flow separation that fully or partially destroys the ability of the diffuser to raise the static pressure as the steam velocity is reduced by increasing the flow area. This is often caused by a vapor boundary layer that gets thicker along the diffuser surface in the direction of flow ultimately permitting the flow separation mentioned above.
U.S. Pat. No. 5,167,123 by Ronald E. Brandon describes a method and apparatus for improving the performance of vapor turbine diffusers by preventing flow separation from the diffuser walls. Such separation from the diffuser walls is decreased or eliminated herein by chilling the diffuser walls below the saturation temperature; causing some condensation to occur and insuring vapor flow toward the walls to eliminate the natural tendency toward separation in diffusing vapor passages.
Although using flow vanes may smooth the flow of steam from the last stage of the turbine to the condenser and the cooling of the diffuser walls may improve the performance of vapor turbine diffusers by preventing flow separation from the diffuser walls, other high velocity steam flow areas remain the exhaust hood. Accordingly, it may be desirable to provide further measures to reduce areas of high flow velocity within the exhaust hood.
The present invention relates to slowing the velocity of saturated steam flow within the exhaust path between a steam turbine and a condenser, thereby reducing exhaust losses. One or more cooled exhaust hood plates may be provided within the exhaust flow path in areas of high velocity flow to condense the saturated steam.
Briefly in accordance with one aspect, an exhaust system is provided for a steam turbine. The exhaust system includes an exhaust hood coupled to a casing of a steam turbine and a diffuser within the exhaust hood, adapted for receiving an exhaust steam flow from an exhaust outlet of the casing of the steam turbine and discharging the exhaust steam flow. A condenser is adapted for receiving the exhaust steam flow from the exhaust hood. The exhaust steam flow is directed from an outlet of the diffuser to the condenser. At least one exhaust hood plate within the exhaust hood is adapted for providing a substantially uniform distribution of the exhaust steam. A cooling flow is provided within the at least one exhaust hood plate is adapted for condensing the exhaust steam in proximity to the structural elements.
According to a second aspect of the present invention, a method is provided for reducing exhaust loss in an exhaust hood of a steam turbine, which includes a diffuser and an exhaust path from an outlet of the diffuser to a condenser. The method includes mapping an exhaust steam flow between a steam outlet of a final stage of a steam turbine and a condenser and then determining high velocity regions of exhaust steam flow. At least one guide vane is positioned within the exhaust steam flow and the at least one guide vane is cooled. Exhaust steam flow in proximity to the guide vane is cooled and condensed.
According to a further aspect of the present invention, a steam turbine is provided including an exhaust system with an exhaust hood coupled to a casing of the steam turbine and a diffuser within the exhaust hood, adapted for receiving an exhaust steam flow from an exhaust outlet of the casing of the steam turbine and discharging the exhaust steam flow. A condenser is provided, adapted for receiving the exhaust steam flow from the exhaust hood. The exhaust steam flow is directed from an outlet of the diffuser to the condenser. At least one exhaust hood plate is provided within the exhaust hood, adapted for delivering a substantially uniform distribution of the exhaust steam. A cooling flow is directed internal to the at least one exhaust hood plate, adapted for condensing the proximate exhaust steam.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The following embodiments of the present invention have many advantages, including reducing areas of high velocity in an exhaust steam flow from a steam turbine, thereby reducing exhaust flow losses.
The current technology for steam turbine exhaust hoods, is primarily a fabricated steel structure, which supports the stationary and rotating pieces of the turbine, and seals the exhaust area from atmospheric air. The exhaust of the steam turbine is at a high vacuum, i.e. well below atmospheric pressure. Therefore the exhaust hood structure must be stiff enough to withstand the pressure force of atmospheric air, and yet large enough to allow the steam to expand and diffuse thorough it. The present invention provides exhaust hood plates within the exhaust steam flow, which have coolant circulating through them. The cooled plates condense the steam near the plates, and improve the flow through the exhaust hood with this action of condensation. The exhaust hood plates may be structural members within the exhaust hood, designed to promote the integrity of the exhaust hood structure. The exhaust hood plates may also act as flow vanes or flow guides arranged to assist in smoothly directing the flow of exhaust steam from the turbine and through the exhaust hood to a condenser connected thereto.
Exhaust hood loss can have a very large impact on the steam turbine performance. The exhaust hood may be designed to diffuse the steam leaving the last stage, then this exhaust hood loss can be reduced. By having coolant circulating through the exhaust hood plates in the flow path the steam adjacent to the cooled plates will be cooled and will condense on the cooled plates. This condensation will occur in the low velocity flow region near the plates, and it will reduce the boundary layer, and improve the flow through the hood. This act of condensation will also assist in keeping the exhaust steam flow attached to the hood, and resist flow separation
Also illustrated is an outer exhaust hood 22, which surrounds and supports the inner casing of the turbine as well as other parts such as the bearings. The turbine includes steam guides 24 for guiding the steam exhausting from the turbine into an outlet 26 for flow to one or more condensers. With the use of an exhaust hood supporting the turbine, bearings and ancillary parts, the exhaust steam path is tortuous and subject to pressure losses with consequent reduction in performance and efficiency. A plurality of support structures may be provided within the exhaust hood 22 to brace the exhaust hood and to assist in guiding the steam exhaust flow. An exemplary support structure 30 is situated to receive and direct the steam exhaust flow 35 from the steam turbine 10. The support structure 30 will be described in greater detail in
In an embodiment of the present invention exhaust hood plates within such regions of high velocity may be cooled. In this exemplary figure, it may be desirable to cool surface 160 to condense the steam, reducing the boundary layer and improving flow through the exhaust hood. Other exhaust hood plates within the steam flow path may also be cooled.
The exhaust hood plates 200 may further act as exhaust flow guides that assist in directing exhaust flow from an initial axial direction to a radial direction within the exhaust hood. These exhaust hood plates may exist both in the upper half and lower half of the exhaust hood. However analysis of flow velocity in the respective upper and lower halves of the exhaust hood may indicate higher exhaust steam velocities in the lower half exhaust hood, making the application of cooling to structures of the lower half more economically desirable.
The exhaust hood plates 200 arranged for cooling may include double walled structural plates 205 forming an internal channel 215 between the structural plates for a flow of a coolant. Internal baffles between the structural plates 205 may further direct the flow of the coolant. Coolant may be specifically directed to cool specific surfaces 260 of the structural plates so as to condense along the surface. By decreasing the volume of the steam adjacent to the surface through cooling, more space may be made available for the remaining exhaust steam to pass, thereby reducing the high steam velocity areas around the surface of the structural plates. The condensation of exhaust hood steam will reduce the required area for diffusing. Local condensation in boundary layer of steam flow will reduce boundary layer. Local condensation in boundary layer of steam flow will also reduce flow separation.
A cooling system may provide coolant from a side surface 230 the lower exhaust hood 105 through an inlet port 225 to the channel 215 between plates 205. Cooling ports may be provided on opposing sides of the lower exhaust hood 105. The cooling system may discharge the coolant from a discharge port 235 at a convenient location, which may include the bottom 170 of the lower exhaust hood. The coolant may include cooled condensate, chilled water or a non-water coolant. The cooling system may further include inlet valves, outlet valves, flow instruments and other known fluid components.
The exhaust hood plates with cooling may be provided on future steam turbine exhaust hoods or be retrofit to existing steam turbine exhaust hoods. Retrofit on existing steam turbine exhaust hoods may be especially desirable for upgraded steam turbines wherein the higher rating of the upgraded unit would result in higher exhaust steam exhaust velocity impinging on the exhaust hood plates and potentially higher pressure drops and efficiency losses without the condensing effects of the present invention.
While various embodiments are described herein, it will be appreciated from the specification that various combinations of elements, variations or improvements therein may be made, and are within the scope of the invention.