Cooled flow deflection apparatus for a fluid-flow machine which operates at high temperatures

Information

  • Patent Grant
  • 6419449
  • Patent Number
    6,419,449
  • Date Filed
    Friday, December 29, 2000
    24 years ago
  • Date Issued
    Tuesday, July 16, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Lopez; F. Daniel
    • Woo; Richard
    Agents
    • Burns, Doane, Swecker & Mathis, L.L.P.
Abstract
Apparatus is disclosed for providing cooling channels in the interior of a gas turbine rotor blade. The cooling channels are formed by metallic inserts which extend from adjacent the root of the blade toward the tip. The inserts are substantially flat and are secured in the interior of the airfoil section by means of rails which engage the longitudinal edges of the inserts and serve as a guide during insertion. The rails are preferable formed integrally with the blade casting.
Description




FIELD OF THE INVENTION




The present invention relates to cooled stator blades or rotor blades for a gas turbine.




Such a flow deflection apparatus is generally known from the prior art, for example in the form of a cooled stator blade or rotor blade for a gas turbine.




BACKGROUND OF THE INVENTION




Present-day flow deflection apparatus, especially stator blades or rotor blades in a gas turbine, are subjected to ambient temperatures which are above the maximum permissible material temperature. The use of special internal cooling channels reduces the metal temperature to a level which allows operation of such apparatus at high temperatures.





FIGS. 1 and 2

respectively show a cross section and longitudinal section of an example of a rotor blade of a gas turbine, as is currently used. The blade


10


essentially comprises a blade airfoil section


11


and a blade root


12


, by means of which it is attached to the rotor of the gas turbine. A number of cooling channels


17


run in the longitudinal direction of the blade


10


in the interior of the (hollow) blade airfoil section


11


, through which cooling channels


17


a cooling fluid, generally cooling air which enters through the blade root


12


, flows. The cooling fluid runs, with a cooling effect, in the cooling channels


17


along the insides of the hot-gas walls


14


and then (for film cooling) emerges to the outside through appropriate film-cooling openings which are arranged on the leading edge


18


, on the trailing edge


19


and at the blade tip (the emerging cooling fluid is indicated by the arrows in FIG.


2


). The individual cooling channels


17


are separated from one another by separating walls


13


which at the same time have deflection devices


16


to ensure that the cooling fluid flows successively through adjacent cooling channels in alternately opposite directions.




Until now, and in this case specifically in the case of rotating guide apparatuses such as rotor blades, the cooling channels


17


and their separating walls


13


have been cast.




The known, cast separating walls


13


and deflection devices


16


, which are also referred to as ribs, have a number of disadvantages, however:




The transitional region (


15


in

FIG. 1

) from the hot-gas wall


14


to the separating wall (rib)


13


is an area which is difficult to cool owing to the large amount of material in that area. Increased heat transfer together with increased cooling-air consumption is required in order to ensure adequate strength there. The cold separating walls (ribs)


13


, around which the cooling air flows, lead to thermal stresses with the hot-gas wall


14


.




Casting of the internal channels leads to a high blade weight, which can lead to high centrifugal-force stresses both for the blade root


12


and for the blade airfoil section


11


.




The complex casting lengthens casting development and increases the amount of scrap.




SUMMARY OF THE INVENTION




The object of the invention is thus to provide a cooled flow deflection apparatus which avoids the described disadvantages of the known apparatus and in particular is simple to produce, can be flexibly matched to the respective application, and is efficiently cooled.




The object is achieved by constructing the separating walls as separate inserts which are subsequently inserted into the apparatus, and are secured there. The invention is thus considerably different from solutions such as those described in U.S. Pat. No. 5,145,315 or U.S. Pat. No. 5,516,260, in which specific inserts in cast cooling channels are used for specific guidance of the cooling fluid.




The use of inserts (for example, in the case of blades, inserted through the blade root or through the blade tip) composed of metal or non-metal materials as a substitute for cast separating walls and, possibly, deflection devices, has a number of advantages:




There is no large amount of material in the transitional region from the hot-gas wall to the insert (to the separating wall).




There are no thermal stresses between the insert (separating wall) and the hot-gas wall.




In the case of rotating blades, the blade weight and thus the centrifugal-force stresses are reduced both in the blade root and in the blade airfoil section.




In the case of cast blades, the cast core is simpler, as a result of which both its capability to be produced and that of the blade are simpler.




The cooling system can easily be adjusted by replacing the inserts, for example by varying the deflection radius of deflection devices or by introducing connecting cross sections between two cooling channels.




A first preferred embodiment of the flow deflection apparatus according to the invention is characterized in that the flow deflection apparatus is in the form of a hollow casting, and in that holders, which are in the form of rails and into which the separating walls are inserted, are integrally formed in the interior of the flow deflection apparatus. This considerably simplifies assembly and attachment of the inserts, and ensures that the separating walls or inserts are sealed well at the edges. The separating walls are in this case preferably flat strips composed of a metallic or heat-resistant non-metallic (ceramic or composite) material.




A secure seating for the inserts is achieved if, according to a second preferred embodiment of the invention, the inserted separating walls are, for security, connected by an integral material joint, preferably by soldering or welding, to the flow deflection apparatus.




In the simplest form, the separating walls may be straight.




It is particularly simple and advantageous if, according to another embodiment, the cooling fluid flows in mutually opposite directions in two adjacent cooling channels, if the cooling fluid is deflected from the outlet of the one cooling channel into the inlet of the other cooling channel by means of a deflection device, and if the deflection is produced by a separating wall which is bent into a U-shape.




One particularly preferred embodiment of the flow deflection apparatus according to the invention is characterized in that the flow deflection apparatus is a blade in a gas turbine. Owing to the comparatively complex geometry of the blade, the invention in this case results in considerable simplifications.




Another embodiment, which is particularly advantageous for rotor blades which rotate at high speed, is characterized in that the cooling channels and separating walls extend essentially in the radial direction with respect to the rotation axis of the gas turbine, in that the inserted separating walls are, for security, connected by an integral material joint, preferably by soldering or welding, to the blade, and in that the integral material joint is arranged at the end of the separating walls close to the axis.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be explained in more detail in the following text with reference to preferred embodiments and in conjunction with the drawings, in which:





FIG. 1

shows the cross section through a turbine blade having cast cooling channels according to the prior art;





FIG. 2

shows a longitudinal section through the blade shown in

FIG. 1

;





FIG. 3

shows a cross section, comparable to that in

FIG. 1

, through a blade according to a preferred embodiment of the invention; and





FIG. 4

shows a longitudinal section, comparable to that in

FIG. 2

, through the blade shown in FIG.


3


.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 3 and 4

respectively show a cross section and longitudinal section of an exemplary embodiment of a cooled flow deflection apparatus according to the invention in the form of a rotor blade for a gas turbine. The geometry of the blade


20


is similar to that of the known blade


10


shown in

FIGS. 1 and 2

.




Once again, the blade


20


essentially comprises a blade airfoil section


21


and a blade root


22


, by means of which it is attached to the rotor of the gas turbine. A number of cooling channels


27


, through which a cooling fluid which enters through the blade root


22


flows, run in the longitudinal direction of the blade


20


, in the interior of the (hollow) blade airfoil section


21


. The cooling fluid runs in cooling channels


27


along the insides of the hot-gas walls


24


, with a cooling effect, and in this case as well emerges to the outside through appropriate film cooling openings which are arranged on the leading edge


28


, on the trailing edge


29


, and at the blade tip. The individual cooling channels


27


are separated from one another by separating walls


23


which at the same time have deflection devices


26


to ensure that the cooling fluid flows successively through adjacent cooling channels in alternately opposite directions.




In contrast to the blade shown in

FIGS. 1 and 2

, the separating walls


23


are in this case not cast, however, that is to say produced together with the blade


20


in one casting process, but are separate inserts, in the form of strips, which, once the blade


20


has been cast, are introduced through the blade root


22


or through the opposite blade tip. In order to allow the separating walls


23


to be inserted as required and to be secured after insertion, holders


30


which are in the form of rails and in which the longitudinal edges of the separating walls


23


are guided during insertion are integrally formed on the insides of the hot-gas walls.




The separating walls (inserts)


23


may have any desired shape. For example, they may be straight. If a number of cooling channels are intended to be connected to one another by means of deflection devices


26


, it is advantageous for the separating walls


23


to be bent into a U-shape. The separating walls


23


can be secured on one or more sides, for example by soldering or welding. They may be fixed in the blade tip region or in the blade root region. The latter has the advantage that the centrifugal forces which occur load the insert or the separating wall in tension, thus preventing them from bulging out.




In principle, the separating walls which can be inserted are provided at the same time that the blades are produced. However, it is also feasible within the scope of the invention for the cast separating walls subsequently to be removed from completely cast blades as shown in

FIGS. 1 and 2

and for separate separating walls to be inserted and to be secured as a substitute for them.



Claims
  • 1. A cooled flow deflection apparatus for a fluid-flow machine which operates at high temperatures, which flow deflection apparatus has a leading edge and a trailing edge and an interior defined between the leading edge and the trailing edge, a number of parallel-running cooling channels formed in the interior, which are separated from one another by separating walls for a cooling fluid to pass through, wherein the separating walls are in the form of separate inserts which can be pushed into the flow deflection apparatus subsequently;the cooling fluid flows in mutually opposite directions in two adjacent cooling channels, the cooling fluid being deflected from the outlet of the one cooling channel into the inlet of the other cooling channel by means of a deflection device, and the deflection being produced by a separating wall which is bent into a U-shape; and the separate inserts being spaced apart from each other successively from the leading edge to the trailing edge and defining at least one path through the interior from the leading edge to the trailing edge.
  • 2. The flow deflection apparatus as claimed in claim 1, wherein the flow deflection apparatus is in the form of a hollow casting, and in that holders, which are in the form of rails and into which the separating walls are inserted, are integrally formed in the interior of the flow deflection apparatus.
  • 3. The flow deflection apparatus as claimed in claim 1, wherein the separating walls are in the form of flat strips composed of at least one of a metallic material and a heat-resistant non-metallic material.
  • 4. The flow deflection apparatus as claimed in claim 1, wherein the inserted separating walls are connected by an integral material joint to the flow deflection apparatus, in order to secure them.
  • 5. The flow deflection apparatus as claimed in claim 1, wherein the separating walls are straight.
  • 6. The flow deflection apparatus as claimed in claim 1, wherein the flow deflection apparatus is a blade in a gas turbine.
  • 7. The flow deflection apparatus as claimed in claim 6, wherein the blade is a rotor blade, in that the cooling channels and separating walls extend essentially in the radial direction with respect to the rotation axis of the gas turbine, in that the inserted separating walls are, for security, connected by an integral material joint to the blade, and the integral material joint is arranged at the end of the separating walls close to the axis.
  • 8. A gas turbine blade comprising an airfoil section and a blade root, the interior of the blade having a plurality of cooling channels separated from each other by separating walls, the blade having a leading edge and a trailing edge and the interior of the blade having rails, the separating walls being in the form of separate inserts engaging the rails and being supported thereby;cooling fluid flows in mutually opposite directions in two adjacent cooling channels, the cooling fluid being deflected from the outlet of the one cooling channel into the inlet of the other cooling channel by means of a deflection device, and the deflection being produced by a separating wall which is bent into a U-shape; and the separate inserts being spaced apart from each other successively from the leading edge to the trailing edge and defining at least one path through the interior from the leading edge to the trailing edge.
  • 9. The gas turbine blade as claimed in claim 8, wherein the inserts are curved to deflect cooling air from one of the cooling channels to another cooling channel.
  • 10. The gas turbine blade as claimed in claim 8, wherein the inserts are formed of flat metallic strips.
  • 11. A gas turbine blade comprising a metallic casting in the shape of a blade having a blade airfoil section and a blade root, the casting having a hollow space in the interior of the airfoil section, and the airfoil section having a leading edge and a trailing edge, cooling channels in the hollow space arranged for receiving a cooling fluid from the blade root and directing the cooling fluid toward the tip of the airfoil section, the cooling channels including a plurality of inserts in the interior of the airfoil section, the inserts being secured by holders in the hollow interior of the airfoil section;the cooling fluid flows in mutually opposite directions in two adjacent cooling channels, the cooling fluid being deflected from the outlet of the one cooling channel into the inlet of the other cooling channel by means of a deflection device, and the deflection being produced by an insert which is bent into a U-shape; and the separate inserts being spaced apart from each other successively from the leading edge to the trailing edge and defining at least one path through the interior from the leading edge to the trailing edge.
  • 12. The gas turbine blade as claimed in claim 11, wherein the blade is a rotor blade.
  • 13. The gas turbine blade as claimed in claim 11, wherein the holders are in the from of rails for guiding the insertion of the inserts in the interior of the airfoil section.
  • 14. The gas turbine blade as claimed in claim 11, wherein the inserts are secured in the holders by at least one of soldering and welding.
Priority Claims (1)
Number Date Country Kind
199 63 716 Dec 1999 DE
Parent Case Info

This application claims priority under 35 U.S.C. §§ 119 and/or 365 to Appln. No 199 63 716.4 filed in Germany on Dec. 29, 1999; the entire content of which is hereby incorporated by reference.

US Referenced Citations (6)
Number Name Date Kind
3369792 Kraimer et al. Feb 1968 A
3628885 Sidenstick et al. Dec 1971 A
4257734 Guy et al. Mar 1981 A
5193980 Kainez et al. Mar 1993 A
5203873 Corsmeier et al. Apr 1993 A
6238182 Mayer May 2001 B1
Foreign Referenced Citations (3)
Number Date Country
29 09 315 Apr 1979 DE
691 00 957 Feb 1994 DE
1078116 Jun 1964 GB