Cooled motor

Information

  • Patent Grant
  • 8723468
  • Patent Number
    8,723,468
  • Date Filed
    Thursday, April 28, 2011
    13 years ago
  • Date Issued
    Tuesday, May 13, 2014
    10 years ago
Abstract
A motor having a first portion configured to turn in a forward direction, a second portion coaxially mirrors the first portion; and a central fan between the first and second portions, and forcing air through the portions. A thermoelectric cooler element, thermally coupled to the portion is configured to cool the motor. A motor controller is electrically coupled to the first and second portions, and operates a portion in response to a condition sensed by the motor controller. The condition sensed by the motor controller is a motor torque, a motor speed, a motor casing temperature, or a zoned motor casing temperature. A method includes detecting a motor operational command; selecting a motor operational state using motor portion responsive to the motor command; sensing a heating state of a motor portion; and providing a cooling state to the motor portion responsive to the heating state.
Description
BACKGROUND

1. Field of the Invention


The present invention relates to electric motors and more particularly to electric motors having cooling apparatus.


2. Background Art


Product satisfaction is driven at a particular product price point by product safety, product reliability, and product longevity. This is particularly so in the field of paper shredders, where a shredder can be expected to endure excessive or rough wear regardless of the heartiness of the shredder product specifications. Such excessive or rough wear can, over time, degrade the reliability and longevity of the shredder product, causing the user to become dissatisfied with the product. In some cases, repeated stresses on the moving parts of the shredder may cause part failure, leading to the expense of product repair or replacement, a further decrease in satisfaction, or even loss of goodwill for the respective purchaser in the paper shredder brand. Even marginally stressful moments of operation may, in the aggregate, take their toll on the operating machinery of the shredder.


One shredder part which can be vulnerable to mechanical and thermal stresses is the shredder electric motor, which can arise from, for example, frequent starting; overloading; jamming; prolonged, unloaded operation; and continuous, beyond-rating use. Unnecessary electrical usage also is undesirable. Over time, the cumulative stresses faced by a shredder motor may lead to premature failure, or to poor performance. A common thread with these stressors is the heating effects of motor current (I2R losses). Many sophisticated electronic controllers have been devised to reduce the effects of I2R losses upon motors. Complex mechanical cooling systems have been advanced for large motors, as well. However, in the sphere of fractional-horsepower electric motors, as used in light- to medium-duty paper shredders and industrial equipment, sophisticated electronic controllers and complex mechanical coolers can add prohibitive premiums to the motor cost, and to the cost to purchasers, reducing a manufacturer's market share. An inexpensive cooling apparatus for motors is needed.


SUMMARY

Embodiments herein provide motor apparatus and methods of operating the motor apparatus. The motor can include a first portion configured to turn in a forward direction; a second portion configured to turn in the forward direction with the first portion, wherein the second portion is coaxially mirrored to the first portion; and at least one central vane fan disposed between the first portion and the second portion, and configured to force air through a portion of one of the first portion or the second portion. Embodiments also can include a thermoelectric cooler element (Peltier device), thermally coupled to at least one of the first or second portions, and configured to cool a portion of the motor. Other motor embodiments can include a motor controller electrically coupled to the first portion and to the second portion, and configured to operate at least one of the portion in a predetermined direction in response to a condition sensed by the motor controller. In still other embodiments the motor apparatus can include a heat sensor set apart from the thermoelectric cooler element, in which the thermoelectric cooler element being responsive to the heat sensor.


In motor apparatus having central vanes, at least two central vane fans are disposed between the first portion and the second portion and wherein at least two central vane fans force air into each of the first portion and the second portion when the first and second portions turn in the forward direction.


In still other motor embodiments, the motor can include a motor controller electrically coupled to the first portion and to the second portion, and configured to operate at least one of the portion in a predetermined direction in response to a condition of the motor. It also can include a thermoelectric cooler element, thermally coupled to at least one of the first or second portions, and configured to cool a portion of the motor; and a heat sensor set apart from the thermoelectric cooler element, the thermoelectric cooler element being responsive to the heat sensor. Furthermore, the motor embodiment can have at least two central vane fans disposed between the first portion and the second portion and wherein the at least two central vane fans force air into each of the first portion and the second portion when the first and second portions turn in the forward direction. Respective embodiments of the motor apparatus include an alternating current (AC) electric motor, a direct current (DC) electric motor, a brushless electric motor, or a brushed electric motor.


In yet other motor apparatus, a motor embodiment can include a first portion configured to turn in a forward direction or a reverse direction; a second portion configured to turn in the direction with the first portion, wherein the second portion is coaxially mirrored to the first portion; and two central vane fans set apart and disposed to force air between the first portion and the second portion. The embodiment includes a motor controller electrically coupled to the first portion and to the second portion, and configured to operate at least one of the portions in a predetermined direction in response to a condition sensed by the motor controller.


The motor apparatus embodiment further can include a motor casing surrounding the first portion and the second portion; a heat spreader thermally coupled to the motor casing; and a thermoelectric cooler element thermally coupled to and removing heat from one of the heat spreader and the motor casing in response to a condition sensed by the motor controller. In some embodiments of this motor apparatus embodiment, the condition sensed by the motor controller can be one of motor casing temperature, motor torque, or motor speed. In other embodiments, condition sensed by the motor controller is a zoned motor casing temperature.


A method of operating a motor is provided, including detecting a motor operational command; selecting a motor operational state responsive to the motor operational command using one motor part or another motor part or both; sensing a heating state of a portion of the motor; and providing a cooling state to the portion of the motor in response to the heating state. The method also can include electing a motor operational state having a power need; and one of energizing or de-energizing one motor part or another motor part or both to meet the power need. A motor embodiment can have a plurality of thermal zones, each of the zones including a heat sensor set apart from a thermoelectric cooling element and the method including selecting at least one thermal zone; and regulating the thermal state of the thermal zone responsive to the heat sensor.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention disclosed herein are illustrated by way of example, and are not limited by the accompanying figures, in which like references indicate similar elements, and in which:



FIG. 1 is a graphical illustration of an embodiment of an electrical motor having a cooling system, in accordance with the teachings of the present invention; and



FIG. 2 is a flow diagram illustrating operational embodiments of an electrical motor, in accordance with the teachings of the present invention.





Skilled artisans can appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve the understanding of the embodiments of the present invention. In the figures, like numbers correspond to like elements.


DETAILED DESCRIPTION

Embodiments of the present invention can assist in reducing overheating in a motor. In particular, selected embodiments can be used with a fractional horsepower (FHP) motor, as may be used without limitation, to power a light- or medium-duty office or industrial device. Some embodiments are passive devices, while some are active.


A universal motor in accordance with embodiments herein generally include a motor portion (101a) on the left side of a horizontal axis being mirrored by the motor portion (101b) on the right. The motor portions are enclosed in a ventilated casing 105, and employ a common rotor shaft 107. Accordingly, motor portions 101a, 101b respectively include a stator 115a, 115b, a rotor 120a, 120b, commutator 110a, 110b, commutator fan 130a, 130b, and rotor bearings 125a, 125b.


Although a universal series-wound type of motor is used to describe the innovations herein, embodiments may be used mutatis mutandi on an AC motor, a DC motor, a brushed motor, or a brushless motor. For purposes of the present presentation, “forward” motion is in the direction of rotation of the arrow 102. Motor 100 is configured such that both portions 101a and 101b rotate in the same direction and at the same speed at the same time. Motor 100 also may be configured to operate in a “reverse” direction, generally opposite of the “forward” direction of rotation. Suitable motor and system controllers may be developed from PIC® Microcontrollers, available from Microchip Technology Inc., Mission Viejo, Calif. USA.


In pre-existing motors, however, one commutator fan is employed, with the direction of air being forced over the commutator and to the small gap between the rotor and stator. With this configuration, motor temperature generally is uncontrolled throughout the motor and is uncompensated for temperature increases due to the motor slowing, increased motor torque, or inefficiencies arising from commutator fan being the sole cooling device. Current commutator fans also tend to push brush debris into the gap between the rotor and stator, leading to reduced performance and shortened life in the motor. In the embodiments of the present invention, commutator fans 130a, 130b are configured to drive air in the opposite direction, drawing air from the rotor/stator gap and across the commutator. Even so, cooling contributions from commutator fans are quite modest.


However, these and other shortcomings are overcome by adding two central fans 140a, 140b, to the stator shaft, and rotating the fan blade such that air received through external air intakes 150 is drawn in from air external to the casing 105. Intake air is blown through the gap between stator 115a, 115b and rotor 120a, 120b, and toward commutator 110a, 110b. Central fan blades 140a, 140b can be lobular, vane-axial, or other configuration capable of producing a steady flow of air of through the rotor/stator gap. For example, each of central fans may have 9 vanes and be configured to push air in opposite directions when the rotator shaft turns in the “forward” direction of rotation. Although the air from central fans 140a, 140b also tends to be reduced as the motor speed drops or as torque increases on the motor, the larger diameter of the central fan blades, relative to a common commutator fan, can help to supply a significant air flow when not stalled or torqued to a stop.


Likewise, commutator fan 130a, 130b is configured to move air away from the rotor, stator, and commutator, providing a boost to exhausted heated air through side vents 155a, 155b, overall increasing air flowing within motor 100.


Motor 100 does not rely solely on fans to provide cooling. Motor 100 also includes heat spreader 165 into which at least one thermoelectric cooler element, 170a, 170b, 170c, as cooled by the Peltier effect, is fitted thereon. A Peltier-effect thermoelectric cooler device (sometimes called a thermionic cooler) is well-known in the arts and may be obtained, for example, from TEC Microelectronics, Berlin Del. In some embodiments only one thermoelectric cooler element 170b may be used. In other embodiments only one thermoelectric cooler element 170b may be used without heat spreader 165. System controller 195 couples motor controller 175 to heat sensor analyzer 185 and thermoelectric cooler processor 190, and determines when and by how much thermoelectric coolers contribute to cooling of motor 100. Even so, coolers 170a-c may be responsive to control signals received from motor controller 175, which may cause thermoelectric cooler processor to selectively operate one or more of cooler elements 170a-c to provide cooling to the motor, for example, at time of slower rotational speed, increased torque, increased ambient temperature and other thermal increases.


Heat sensors 180a, 180b, 180c, 180d, may be placed judiciously at points on the motor casing 105, to detect differential heating by heat sensor analyzer 185, and to induce thermoelectric cooler processor 190 to attempt to regulate temperature to selected cooler temperatures in the vicinity of heat sensors 180a-d. Plural heat sensors 180a-180d may become associated with cooling zones of motor 100, as well as with plural cooler elements 170a-c. Motor controller 175 may cooperate with heat sensor analyzer 185 and thermoelectric cooler processor 190 in system controller 195 to provide zoned motor cooling, with a zone approximately identified by the thermal vicinity of each heat sensor 180a-d. Zoned cooling permits regional cooling or lack of cooling in a motor region which may be defined by a region surrounding a respective heat sensor 180a-d.


Although three (3) thermoelectric cooler elements and four (4) heat sensors are illustrated greater or fewer of one or both devices may be used as may be used to constrain motor temperature under one or more stressful conditions. Alternatively, a thermoelectric cooler may be operated to provide a selected amount of heating to a region of motor 100. Although, thermoelectric cooler elements 170a-c are depicted as being on the general bottomside of motor 100, it is within the scope of the present invention to encompass placement of cooler elements and heat sensors in other locations, and to have an at least partially conformal fitting of heat spreader 165 onto motor casing 105 onto which sensors and cooler elements are disposed.


In alternative embodiments, one or more thermoelectric cooler elements 170a-c may be eliminated, as may one or more of heat sensor 180a-d, motor controller 175, heat sensor analyzer 185, thermoelectric cooler processor 190 and system controller 195. In one embodiment, motor 100 may include the mechanical cooling elements including, without limitation, the central vane fans, as well as one thermoelectric cooler, biased to increase cooling as motor speed is reduced, as detected motor torque increases, or both. In yet another embodiments, external air intakes 150 can be configured and outfitted with replaceable air filters.


Furthermore, because both portions of the motor are configured to turn in the same direction, motor controller 175 may be configured to energize one portion (101a or 101b) of the motor 100 when the motor experiences a light or a suddenly decreased load, and to energize both portions 101a, 101b when the motor experiences a heavier load, or a sudden increase in load. Use as an auxiliary portion (101a or 101b) can be alternated to even wear. Selective operation of the first portion or of the second portion can allow one to use less energy, if less is sensed to be needed. Similarly, if motor controller 175 is operating in single rotor/stator mode and detects that motor 100 requires more power, motor controller can add power to the portion of the motor currently “idling.” The section selected to be “idling” may be swapped between operating “turns” so that even usage can be achieved.


A method of operating a motor S100 with one part and another part may include, detecting a motor operational command (S01); selecting a motor operational state responsive to the command (S02); selecting operation the one part or the other part or both to meet the motor operational state (S03), sensing a heating state of the motor (S04), and providing a cooling state (S05) to a portion of the motor in response to the heating state.


A method may include detecting a motor operational command, which may include one of a forward direction motor operation or a reverse direction motor operation. Selecting a motor operational state responsive to the motor operational command may include selecting one motor part, another motor part, or both motor parts to be energized in response to the motor operational command. Sensing the heating state of the motor may include sensing the state of a heat sensor thermally coupled to the motor, analyzing the state of the heat sensor, applying a cooling current to a thermoelectric cooler element thermally coupled to the motor, providing thermal cooling to a region surrounding the thermoelectric cooler element. In some embodiments of the method, zone cooling can be employed in which the motor casing area can be set as thermal zones, having a heat sensor set apart from a corresponding cooling element, with the area of heat sensing and thermal cooling providing a thermal zone, which may overlap with another thermal zone, with the pragmatic object being to provide sufficient, inexpensive cooling to the motor.


When operating with one part of the motor operating, a motor controller can perform sensing of a power need state in which the other part of the motor is brought into operation to provide additional power. Conversely, when both parts of the motor are operating a motor controller can perform sensing of a power-need state in which one or the other part of the motor can be de-energized to reduce unnecessary power consumption.


The embodiments of the present invention disclosed herein are intended to be illustrative only, and are not intended to limit the scope of the invention. It should be understood by those skilled in the art that various modifications and adaptations of the prevent invention as well as alternative embodiments of the prevent invention may be contemplated or foreseeable. It is to be understood that the present invention is not limited to the sole embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims
  • 1. A motor, comprising: a first portion configured to turn in a direction;a second portion configured to turn in the direction with the first portion, wherein the second portion coaxially mirrors the first portion; andat least one central fan disposed between the first portion and the second portion, and configured to force air through a portion of the first portion and the second portion.
  • 2. The motor of claim 1, further comprising: a thermoelectric cooler element, thermally coupled to at least one of the first or second portions, and configured to cool the respective portion of the motor.
  • 3. The motor of claim 1, further comprising: a motor controller electrically coupled to at least one of the first portion or the second portion, and configured to operate the at least one of the portion in a predetermined direction in response to a condition sensed by the motor controller.
  • 4. The motor of claim 2, further comprising: a heat sensor set apart from the thermoelectric cooler element, the thermoelectric cooler element being responsive to the heat sensor.
  • 5. The motor of claim 1, wherein at least two central fans are disposed between the first portion and the second portion and wherein at least two central fans force air into each of the first portion and the second portion when the first and second portions turn in the forward direction.
  • 6. The motor of claim 1, further comprising: a motor controller electrically coupled to the first portion and to the second portion, and configured to operate at least one of the portion in a predetermined direction in response to a condition of the motor;a thermoelectric cooler element, thermally coupled to at least one of the first or second portions, and configured to cool a respective portion of the motor;a heat sensor set apart from the thermoelectric cooler element, the thermoelectric cooler element being responsive to the heat sensor; andat least two central vane fans disposed between the first portion and the second portion and wherein the a respective one of the two central vane fans force air into a corresponding portions when the first and second portions turn in the forward direction.
  • 7. The motor of claim 6, further comprising an alternating current (AC) electric motor.
  • 8. The motor of claim 6, further comprising a direct current (DC) electric motor.
  • 9. The motor of claim 6, further comprising a brushless electric motor.
  • 10. The motor of claim 6, further comprising a brushed electric motor.
  • 11. A motor, comprising: a first portion configured to turn in a forward direction or a reverse direction;a second portion configured to turn in the direction with the first portion, wherein the second portion coaxially mirrors the first portion;two central vane fans set apart, wherein a respective fan is disposed to force air through a corresponding one of the first portion and the second portion;a motor controller electrically coupled to at least one of the first portion and the second portion, and configured to operate the at least one of the portions in a predetermined direction in response to a condition sensed by the motor controller.
  • 12. The motor of claim 11, further comprising: a motor casing surrounding the first portion and the second portion;a heat spreader thermally coupled to the motor casing,a thermoelectric cooler element thermally coupled to and removing heat from one of the heat spreader and the motor casing in response to a condition sensed by the motor controller.
  • 13. The motor of claim 11, wherein the condition sensed by the motor controller is one of motor torque or motor speed.
  • 14. The motor of claim 12, wherein the condition sensed by the motor controller is one of motor casing temperature, motor torque, or motor speed.
  • 15. The motor of claim 12, wherein the condition sensed by the motor controller is a motor casing temperature zone.
  • 16. A method of operating a motor, comprises: detecting a motor operational command;selecting a motor operational state responsive to the motor operational command using one motor part or another motor part or both;sensing a heating state of a portion of the motor; andproviding a cooling state to the portion of the motor in response to the heating state.
  • 17. The method of claim 16, further providing: electing a motor operational state having a power need;one of energizing or de-energizing one motor part or another motor part or both to meet the power need.
  • 18. The method of claim 17, further comprising an AC motor.
  • 19. The method of claim 17, further comprising a DC motor.
  • 20. The method of claim 16, wherein the motor has a plurality of thermal zones, each of the zones including a heat sensor set apart from a thermoelectric cooling element, and further comprising: selecting at least one thermal zone; and regulating the thermal state of the thermal zone responsive to the heat sensor.
US Referenced Citations (271)
Number Name Date Kind
3111800 Quianthy Nov 1963 A
3629530 Fischer Dec 1971 A
3724766 Bosland Apr 1973 A
3728501 Larson et al. Apr 1973 A
3746815 Drummer Jul 1973 A
3769473 Lay Oct 1973 A
3780246 Beckering et al. Dec 1973 A
3785230 Lokey Jan 1974 A
3829850 Guetersloh Aug 1974 A
3860180 Goldhammer Jan 1975 A
3873796 Worobec et al. Mar 1975 A
3947734 Fyler Mar 1976 A
3952239 Owing et al. Apr 1976 A
3953696 Reimann et al. Apr 1976 A
3971906 Sahrbacker Jul 1976 A
4002874 Brown Jan 1977 A
4016490 Weckenmann et al. Apr 1977 A
4018392 Wagner Apr 1977 A
4062282 Miller et al. Dec 1977 A
4068805 Oswald Jan 1978 A
4082232 Brewer Apr 1978 A
4107484 Petersen, III Aug 1978 A
4117752 Yoneda Oct 1978 A
4125228 Brewer Nov 1978 A
4135068 Burns Jan 1979 A
4162042 Mommsen et al. Jul 1979 A
4172400 Brierley Oct 1979 A
4180716 Suzuki Dec 1979 A
4187420 Piber Feb 1980 A
4194698 Kosmowski Mar 1980 A
4262179 Bauer Apr 1981 A
4276459 Willet et al. Jun 1981 A
4277666 Vignaud Jul 1981 A
4349814 Akehurst Sep 1982 A
4423844 Sours et al. Jan 1984 A
4449062 Wilson May 1984 A
4471915 Levin et al. Sep 1984 A
4510860 LaBarge et al. Apr 1985 A
4518958 Cook et al. May 1985 A
4549097 Ulmer Oct 1985 A
4562971 Schwelling Jan 1986 A
4564146 Bleasdale Jan 1986 A
4598182 Breslin Jul 1986 A
4664317 Morton May 1987 A
4673136 Bainco et al. Jun 1987 A
4683381 Dufoug Jul 1987 A
4693428 Raterman et al. Sep 1987 A
4706895 Bricker Nov 1987 A
4709197 Goldhammer et al. Nov 1987 A
4713509 Chebowski Dec 1987 A
4751603 Kwan Jun 1988 A
4753323 Kahkipuro Jun 1988 A
4767895 Parrish Aug 1988 A
4771359 Link Sep 1988 A
4784601 Nitta Nov 1988 A
4784602 Nitta Nov 1988 A
4798116 Silver et al. Jan 1989 A
4821967 Moriyama Apr 1989 A
4824029 Stottmann et al. Apr 1989 A
4839533 Aga Jun 1989 A
4859172 Nitta Aug 1989 A
4882458 Berg et al. Nov 1989 A
4893027 Kammerer et al. Jan 1990 A
4900881 Fisher Feb 1990 A
4910365 Kuo Mar 1990 A
4944462 Raterman et al. Jul 1990 A
4982058 Schroeder et al. Jan 1991 A
5037033 Stottmann et al. Aug 1991 A
5044270 Schwelling Sep 1991 A
5045648 Fogelman, Sr. Sep 1991 A
5065947 Farnsworth Nov 1991 A
5081406 Hughes et al. Jan 1992 A
5100067 Konig et al. Mar 1992 A
5135178 Strohmeyer Aug 1992 A
5166679 Vranish et al. Nov 1992 A
5167374 Strohmeyer Dec 1992 A
5171143 Sohn Dec 1992 A
5186398 Vigneaux, Jr. Feb 1993 A
5207392 Stangenberg et al. May 1993 A
5236138 Stangenberg et al. Aug 1993 A
5268553 Shimoji Dec 1993 A
5269473 Strohmeyer et al. Dec 1993 A
5275342 Galanty Jan 1994 A
5279467 Lydy Jan 1994 A
5295633 Kimbro et al. Mar 1994 A
5318229 Brown Jun 1994 A
D348431 Hofmann Jul 1994 S
5345138 Mukaidono et al. Sep 1994 A
5356286 Sher Oct 1994 A
5397890 Schueler et al. Mar 1995 A
5407346 Sher Apr 1995 A
5421720 Sher Jun 1995 A
5432308 Howie, Jr. Jul 1995 A
5436613 Ghosh Jul 1995 A
5460516 Sher Oct 1995 A
5494229 Rokos et al. Feb 1996 A
5568895 Webb et al. Oct 1996 A
5607295 Khemarangsan Mar 1997 A
5621290 Heller et al. Apr 1997 A
5636801 Kroger Jun 1997 A
5655725 Kroger Aug 1997 A
5662280 Nishio et al. Sep 1997 A
5667152 Mooring Sep 1997 A
5680999 Wada Oct 1997 A
5704776 Sher Jan 1998 A
5724737 Stones Mar 1998 A
5775605 Tsai Jul 1998 A
5788476 Sher Aug 1998 A
5829697 Kroger Nov 1998 A
5829963 Ichikawa Nov 1998 A
5850342 Nakamura et al. Dec 1998 A
5868242 Hall et al. Feb 1999 A
5884855 Chang Mar 1999 A
5897065 Schwelling Apr 1999 A
5921367 Kashioka et al. Jul 1999 A
D412716 Kroger Aug 1999 S
5942975 Sørensen Aug 1999 A
5988542 Henreckson et al. Nov 1999 A
6065696 Tsai May 2000 A
6079645 Henreckson et al. Jun 2000 A
6082643 Kovacs Jul 2000 A
6082644 Turner Jul 2000 A
6089482 Chang Jul 2000 A
6113017 Tsai Sep 2000 A
6116528 Schwelling Sep 2000 A
6247828 Herst Jun 2001 B1
D444809 Chang Jul 2001 S
6260780 Kroger et al. Jul 2001 B1
6265682 Lee Jul 2001 B1
6274828 Chu Aug 2001 B1
6308904 Chang Oct 2001 B1
6325309 Chang Dec 2001 B1
6340124 Charles et al. Jan 2002 B1
6354086 Inoue et al. Mar 2002 B1
6376939 Suzuki et al. Apr 2002 B1
6418004 Mather et al. Jul 2002 B1
6501198 Taylor et al. Dec 2002 B2
6536536 Gass et al. Mar 2003 B1
6550701 Chang Apr 2003 B1
6575285 Jong Jun 2003 B2
D481416 Chang Oct 2003 S
6629654 Neely et al. Oct 2003 B2
6655943 Peterson et al. Dec 2003 B1
6676050 Chang Jan 2004 B2
6676460 Motsenbocker Jan 2004 B1
6724324 Lambert Apr 2004 B1
D494607 Huang Aug 2004 S
6775018 Taniguchi Aug 2004 B1
6779747 McLean et al. Aug 2004 B2
6813983 Gass et al. Nov 2004 B2
6822698 Clapper Nov 2004 B2
6826988 Gass et al. Dec 2004 B2
6834730 Gass et al. Dec 2004 B2
6857345 Gass et al. Feb 2005 B2
D502713 Huang Mar 2005 S
D502714 Huang Mar 2005 S
6877410 Gass et al. Apr 2005 B2
6880440 Gass et al. Apr 2005 B2
6920814 Gass et al. Jul 2005 B2
6922153 Pierga et al. Jul 2005 B2
6945148 Gass et al. Sep 2005 B2
6945149 Gass et al. Sep 2005 B2
6957601 Gass et al. Oct 2005 B2
6962301 Chang Nov 2005 B1
6966513 Chang Nov 2005 B2
6976648 Chang Dec 2005 B2
6978954 Kroeger Dec 2005 B2
6979813 Avril Dec 2005 B2
6981667 Huang Jan 2006 B2
6983903 Chang Jan 2006 B2
6994004 Gass et al. Feb 2006 B2
6997090 Gass et al. Feb 2006 B2
7000514 Gass et al. Feb 2006 B2
7024975 Gass et al. Apr 2006 B2
7040559 Matlin et al. May 2006 B2
7044410 Huang May 2006 B2
7048218 Huang May 2006 B2
7055417 Gass Jun 2006 B1
7077039 Gass et al. Jul 2006 B2
7083129 Beam, III Aug 2006 B2
7093668 Gass et al. Aug 2006 B2
7098800 Gass Aug 2006 B2
7100483 Gass et al. Sep 2006 B2
7121358 Gass et al. Oct 2006 B2
7137326 Gass et al. Nov 2006 B2
7150422 Wang Dec 2006 B2
7171879 Gass et al. Feb 2007 B2
7171897 Barajas et al. Feb 2007 B2
7195185 Matlin Mar 2007 B2
7197969 Gass et al. Apr 2007 B2
7210383 Gass et al. May 2007 B2
7225712 Gass et al. Jun 2007 B2
7228772 Gass Jun 2007 B2
7231856 Gass et al. Jun 2007 B2
7284467 Gass et al. Oct 2007 B2
7290472 Gass et al. Nov 2007 B2
7308843 Gass et al. Dec 2007 B2
7311276 Matlin Dec 2007 B2
7328752 Gass et al. Feb 2008 B2
7344096 Matlin et al. Mar 2008 B2
D583859 Holderfield Dec 2008 S
D584342 Parratt Jan 2009 S
D591335 Holderfield et al. Apr 2009 S
7631822 Matlin et al. Dec 2009 B2
7631823 Matlin et al. Dec 2009 B2
7631824 Matlin et al. Dec 2009 B2
7635102 Matlin et al. Dec 2009 B2
8159094 Ruffing et al. Apr 2012 B2
8495879 Grace Jul 2013 B2
20010030114 Thielman Oct 2001 A1
20020002942 Abraham et al. Jan 2002 A1
20020017175 Gass et al. Feb 2002 A1
20020017176 Gass et al. Feb 2002 A1
20020017178 Gass et al. Feb 2002 A1
20020017179 Gass et al. Feb 2002 A1
20020017180 Gass et al. Feb 2002 A1
20020017181 Gass et al. Feb 2002 A1
20020017182 Gass et al. Feb 2002 A1
20020017183 Gass et al. Feb 2002 A1
20020017184 Gass et al. Feb 2002 A1
20020017336 Gass et al. Feb 2002 A1
20020020261 Gass et al. Feb 2002 A1
20020020262 Gass et al. Feb 2002 A1
20020020263 Gass et al. Feb 2002 A1
20020020265 Gass et al. Feb 2002 A1
20020056348 Gass et al. May 2002 A1
20020056349 Gass et al. May 2002 A1
20020056350 Gass et al. May 2002 A1
20020059853 Gass et al. May 2002 A1
20020059854 Gass et al. May 2002 A1
20020059855 Gass et al. May 2002 A1
20020066346 Gass et al. Jun 2002 A1
20020069734 Gass et al. Jun 2002 A1
20020111702 Angel Aug 2002 A1
20020139877 Beam Oct 2002 A1
20020170399 Gass et al. Nov 2002 A1
20020170400 Gass Nov 2002 A1
20020190581 Gass et al. Dec 2002 A1
20030002942 Gass et al. Jan 2003 A1
20030005588 Gass et al. Jan 2003 A1
20030015253 Gass et al. Jan 2003 A1
20030019341 Gass et al. Jan 2003 A1
20030037651 Gass et al. Feb 2003 A1
20030056853 Gass et al. Mar 2003 A1
20030058121 Gass et al. Mar 2003 A1
20030090224 Gass et al. May 2003 A1
20030090226 Chen et al. May 2003 A1
20030196824 Gass et al. Oct 2003 A1
20040008122 Michael Jan 2004 A1
20040040426 Gass et al. Mar 2004 A1
20040043696 Suzuki Mar 2004 A1
20040163514 Gass et al. Aug 2004 A1
20040173430 Gass Sep 2004 A1
20040181951 Wittke Sep 2004 A1
20040194594 Dils et al. Oct 2004 A1
20040226800 Pierga et al. Nov 2004 A1
20050039586 Gass et al. Feb 2005 A1
20050039822 Gass et al. Feb 2005 A1
20050041359 Gass Feb 2005 A1
20050132859 Hunag Jun 2005 A1
20050157203 Nakakuki et al. Jul 2005 A1
20050166736 Gass et al. Aug 2005 A1
20050218250 Matlin et al. Oct 2005 A1
20050274834 Huang Dec 2005 A1
20050274836 Chang Dec 2005 A1
20060048518 Bell Mar 2006 A1
20060091247 Matlin May 2006 A1
20060157600 Wang Jul 2006 A1
20060169619 Wang Aug 2006 A1
20060249609 Huang Nov 2006 A1
20090167120 Kato et al. Jul 2009 A1
Foreign Referenced Citations (3)
Number Date Country
WO2005097331 Oct 2005 WO
WO2007109753 Sep 2007 WO
WO2008042538 Apr 2008 WO
Related Publications (1)
Number Date Country
20120274256 A1 Nov 2012 US