Cooled pusher propeller system

Information

  • Patent Grant
  • 8764381
  • Patent Number
    8,764,381
  • Date Filed
    Thursday, May 31, 2012
    13 years ago
  • Date Issued
    Tuesday, July 1, 2014
    11 years ago
Abstract
A propulsion system and method includes an annular exhaust nozzle about an axis radially outboard of the annular cooling flow nozzle and ejecting an exhaust flow through an annular exhaust nozzle about an axis radially outboard of the annular cooling flow nozzle.
Description
BACKGROUND

The present invention relates to a propeller system, and more particularly to a propeller system for a pusher type counter-rotating propulsion system.


Turboprop engines are commonly designed to drive either a single row of propellers or two rows of counter rotating propellers. The propeller(s) may be mounted forward of the engine (“tractor” installation) or rearwardly of the engine (“pusher” installation). In the pusher arrangement, the engine has an efficient free stream inlet, and the high speed propeller jet does not impinge on airplane or nacelle surfaces, thus avoiding scrubbing drag. Also, a pusher engine installation on the aircraft empennage minimizes cabin noise generated by wing-mounted tractor nacelle engines.


A pusher arrangement, however, may complicate the location for the gas turbine exhaust. One pusher arrangement locates the gas turbine exhaust upstream of the propellers in an annular or lobed configuration. This configuration may require the nacelle skin downstream of the exhaust and a root section of the propeller blades to be designed for elevated temperatures caused by the hot exhaust gases. Furthermore, hot engine exhaust directed past the pusher propeller may increase noise and reduce airfoil life.


SUMMARY

A propulsion system according to an exemplary aspect of the present invention includes: a first row of propeller blades which rotate about an axis; an annular cooling flow nozzle about an axis, the annular cooling flow nozzle upstream of the first row of propeller blades; and an annular exhaust nozzle about an axis radially outboard of the annular cooling flow nozzle, the annular exhaust nozzle upstream of the first row of propeller blades.


A method of directing an exhaust flow from a propulsion system according to an exemplary aspect of the present invention includes: ejecting a cooling flow through an annular cooling flow nozzle upstream of a first row of propeller blades which rotate about an axis; and ejecting an exhaust flow through an annular exhaust nozzle about an axis radially outboard of the annular cooling flow nozzle.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:



FIG. 1A is a general perspective view of one exemplary pusher type counter-rotating propulsion system embodiment for use with the present invention.



FIG. 1B is an expanded view of a nozzle section of the pusher type counter-rotating propulsion system of FIG. 1A.



FIG. 2 is a sectional view of the nozzle section of the pusher type counter-rotating propulsion system.





DETAILED DESCRIPTION


FIG. 1A schematically illustrates a pusher type counter-rotating propulsion system 10. A gas turbine engine 12 generally includes a compressor section A, a combustor section B and a turbine section N as generally understood. Air is compressed by the compressor section A, mixed and burned with fuel within the combustor section B, then expanded over the turbine section T to generate a high temperature exhaust gas flow E. The exhaust gas flow E from the turbine section N of the gas turbine engine 12 is communicated through an annular exhaust nozzle 14 (FIG. 1B) upstream of a first row of propeller blades 16A which rotate about an axis X. A second row of row of propeller blades 16B may be located downstream of the first row of propeller blades 16A in a counter-rotating propeller (CRP) propfan pusher configuration about the axis X.


Referring to FIG. 1B, the annular exhaust nozzle 14 in one non-limiting embodiment is defined radially outboard of an annular cooling flow nozzle 18. A cooling flow C and/or other airflow that is different from the exhaust gas flow E is communicated through the annular cooling flow nozzle 18. The cooling flow C may be sourced from, for example only, a compressor section of the gas turbine engine 12, an inlet or other source.


The annular exhaust nozzle 14 and annular cooling flow nozzle 18 form an annular nozzle section 15 generally upstream of the first row of propeller blades 16A. The annular exhaust nozzle 14 and annular cooling flow nozzle 18 may be radially defined between a radially outboard engine nacelle 23 and a radially inboard first spinner section 20A which mounts the first row of propeller blades 16A (FIG. 1B). A second spinner section 20B which mounts the second row of propeller blades 16B is downstream of the first spinner section 20A. The second spinner section 20B counter rotates relative the first spinner section 20A while a tail cone 21 is located downstream of the second spinner section 20B. The tail cone 21 is aerodynamically shaped and in one embodiment remains rotationally stationary to facilitate flow.


The nozzles 14, 18 have a relatively low profile and are aerodynamically shaped to minimize noise, drag and weight. The exhaust gas flow and the cooling flow are substantially uniform and directed through the first and second row of propeller blades 16A, 16B to avoid significant noise addition. The nozzles 14, 18 direct the exhaust stream E and the cooling flow C aftward such that at least a portion of the propulsive energy within the streams are exploited.


Referring to FIG. 2, the cooling flow C is directed essentially under the annular exhaust gas flow E to enter each blade 22 at a root section 24 thereof. It should be understood that although only a single propeller blade 22 will be described, the description is similarly applicable to each of the propeller blades 22 in the first row of propeller blades 16A and/or the second row of propeller blades 16B. The cooling flow C operates to lower the temperature of the root section 24 which is proximate the exhaust gas flow E as well as film cool and insulate the spinner sections 20A, 20B and tail cone 21 at least partially from the exhaust gas flow E. The root section 24 may additionally be mechanically insulated or otherwise hardened to further resist the exhaust gas flow E.


The root section 24 includes an intake 26 which communicates with a distribution channel 28. The distribution channel 28 may be defined at least in part by hollow airfoil sections and/or passages in the blade 22. The cooling flow C is communicated through the distribution channel 28 to an exit 30. Once the cooling flow enters the blade 22, the cooling flow C is self-pumped, by the rotational force of blade 22, through the distribution channel 28 which results in thrust recovery when ejected from the exit 30. The exit 30 may be located adjacent a trailing edge section 32 and/or a blade tip section 34. The exit 30 may alternatively or additionally be distributed along the blade trailing edge section 32 to minimize an airfoil wake deficit with a corresponding potential noise reduction. The cooling flow may additionally be directed through a forward distribution channel section 28A adjacent a leading edge section 36 where hot gas impingement exists so as to reduce noise generation while the annular exhaust flow path is generally maintained.


It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.


It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.


Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.


The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The disclosed embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A propulsion system comprising: a first spinner section;a first row of propeller blades mounted to said first spinner section to rotate about an axis;an annular cooling flow nozzle extending about said axis, said annular cooling flow nozzle upstream of said first row of propeller blades;an annular exhaust nozzle extending about said axis radially outboard of said annular cooling flow nozzle, said annular exhaust nozzle upstream of said first row of propeller blades; andan engine nacelle positioned radially outboard relative to said first spinner section, and wherein said annular cooling flow nozzle and said annular exhaust nozzle are located radially between said engine nacelle and said first spinner section.
  • 2. The system as recited in claim 1, further comprising a second row of propeller blades which rotate about said axis in a direction opposite said first row of propeller blades, said second row of propeller blades downstream of said first row of propeller blades.
  • 3. The system as recited in claim 2, further comprising a tail cone downstream of said second row of propeller blades.
  • 4. The system as recited in claim 1, wherein each propeller blade radially extends beyond the engine nacelle.
  • 5. The system as recited in claim 1, wherein said annular exhaust nozzle communicates an exhaust gas flow from a turbine section of a gas turbine engine.
  • 6. The system as recited in claim 1, wherein cooling flow from said annular cooling flow nozzle is directed toward a root section of each propeller blade.
  • 7. The system as recited in claim 6, wherein each root section includes an intake that communicates the cooling flow to a distribution channel formed within the respective propeller blade, and wherein each propeller blade includes an exit that ejects the cooling flow from the propeller blade.
  • 8. The system as recited in claim 7, wherein the exit is adjacent a trailing edge section of the propeller blade.
  • 9. The system as recited in claim 7, wherein the exit is adjacent to a blade tip section.
  • 10. The system as recited in claim 7, wherein said distribution channel comprises a primary distribution channel extending in a direction from a leading edge section of the propeller blade to a trailing edge section of the propeller blade.
  • 11. The system as recited in claim 10, wherein said intake communicates cooling flow to a forward distribution channel extending along the leading edge section of the propeller blade, the forward distribution channel communicating the cooling air flow to the primary distribution channel.
  • 12. The system as recited in claim 11, wherein the exit is adjacent a trailing edge section of the propeller blade.
  • 13. The system as recited in claim 11, wherein the exit is adjacent to a blade tip section.
  • 14. The system as recited in claim 1, wherein said annular exhaust nozzle has an exhaust nozzle exit that is radially outboard of a cooling flow nozzle exit and radially inboard of said engine nacelle.
  • 15. The system as recited in claim 14, wherein said cooling flow nozzle exit is configured to direct cooling flow to at least one intake located in at least one propeller blade.
  • 16. The system as recited in claim 15, wherein said at least one intake is located at a root of said at least one propeller blade.
  • 17. The system as recited in claim 15, wherein said at least one intake is configured to direct said cooling flow to at least one internal distribution channel formed within said at least one propeller blade, and wherein said at least one propeller blade includes at least one exit that ejects the cooling flow from the at least one internal distribution channel.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 12/030,400, filed Feb. 13, 2008.

US Referenced Citations (35)
Number Name Date Kind
2586054 Jonas Feb 1952 A
2627927 Mergen Feb 1953 A
3811791 Cotton May 1974 A
3963368 Emmerson Jun 1976 A
4171183 Cornell et al. Oct 1979 A
4488399 Robey et al. Dec 1984 A
4569199 Klees et al. Feb 1986 A
4688995 Wright et al. Aug 1987 A
4789304 Gustafson et al. Dec 1988 A
4817382 Rudolph et al. Apr 1989 A
4864820 Wynosky et al. Sep 1989 A
4892269 Greco et al. Jan 1990 A
4930725 Thompson et al. Jun 1990 A
4999994 Rued et al. Mar 1991 A
5186609 Inoue et al. Feb 1993 A
5720431 Sellers et al. Feb 1998 A
5931637 Wheeler Aug 1999 A
6041589 Giffin, III et al. Mar 2000 A
6422816 Danielson Jul 2002 B1
6511292 Perkinson et al. Jan 2003 B2
6514044 Talasco et al. Feb 2003 B2
6651929 Dionne Nov 2003 B2
6753513 Goldberg et al. Jun 2004 B2
6769874 Arel Aug 2004 B2
6811376 Arel et al. Nov 2004 B2
6851929 Goldberg Feb 2005 B2
6942181 Dionne Sep 2005 B2
6981844 Perkinson et al. Jan 2006 B2
7159817 VanderMey et al. Jan 2007 B2
7198468 Papple Apr 2007 B2
7296969 Raes et al. Nov 2007 B2
7438528 Goodman et al. Oct 2008 B2
8210798 Stern Jul 2012 B2
20060137355 Welch Jun 2006 A1
20080014095 Moniz et al. Jan 2008 A1
Foreign Referenced Citations (5)
Number Date Country
763 600 Aug 1951 DE
1878872 Jan 2008 EP
860 037 Jan 1941 FR
999 942 Feb 1952 FR
0050779 Aug 2000 WO
Non-Patent Literature Citations (1)
Entry
European search report dated Jan. 14, 2013.
Related Publications (1)
Number Date Country
20120237359 A1 Sep 2012 US
Continuations (1)
Number Date Country
Parent 12030400 Feb 2008 US
Child 13484641 US