Cooled turbine vane with endcaps

Information

  • Patent Grant
  • 6454526
  • Patent Number
    6,454,526
  • Date Filed
    Thursday, September 28, 2000
    24 years ago
  • Date Issued
    Tuesday, September 24, 2002
    22 years ago
Abstract
A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a combustion turbine vane assembly, and more specifically, to a combustion turbine vane assembly having endcaps for directing the flow of a coolant, and an associated method of manufacture and assembly of the vane assembly.




2. Background Information




Combustion turbine, generally, have three main assemblies: a compressor assembly, a combustor assembly, and a turbine assembly. In operation, the compressor assembly compresses ambient air. The compressed air is channeled into the combustor assembly where it is mixed with a fuel. The fuel and compressed air mixture is ignited creating a heated working gas. The heated working gas is typically at a temperature of between 2500 to 2900° F. (1371 to 1593° C). The working gas is expanded through the turbine assembly. The turbine assembly includes a plurality of stationary vane assemblies and rotating blades. The rotating blades are coupled to a central shaft. The expansion of the working gas through the turbine section forces the blades to rotate creating a rotation in the shaft.




Typically, the turbine assembly provides a means of cooling the vane assemblies. The first row of vane assemblies, which typically precedes the first row of blades in the turbine assembly, is subject to the highest temperature of working gas. To cool the first row of vane assemblies, a coolant, such as steam or compressed air, is passed through passageways formed within the vane structure. These passageways often include an opening along the trailing edge of the vane to allow the coolant to join the working gas. Such an “open loop” system has the disadvantage of reducing the energy of the working gas available to do useful work.




“Closed loop” systems allow a coolant to flow through the vane, cooling the vane and absorbing heat, and returning the coolant to be used elsewhere. For example, when the coolant is steam, cool steam is supplied to the vane assemblies and the heated steam may be directed to a steam turbine assembly which is coupled to the closed loop.




An effective closed loop vane cooling design uses a plurality of cooling passages. Prior art closed loop vane assemblies use complicated castings to form the passages. These complex castings, however, have resulted in low manufacturing yields. That is, there is a high rejection rate of the castings during the manufacturing process. The complex casting also required a complex manufacturing process to assemble each vane assembly.




There is, therefore, a need for a turbine vane assembly structured to have a closed loop cooling system which does not require a complicated casting.




There is a further need for a turbine vane structured to have a closed loop cooling system which is easy to assemble.




There is a further need for a turbine vane structure to have a closed loop cooling system which may be easily manufactured.




SUMMARY OF THE INVENTION




These needs, and others, are satisfied by the invention which provides a turbine vane assembly having an outer endcap, an inner endcap, and a vane casting with an outer shroud, an inner shroud, and an airfoil. The outer endcap, the inner endcap, the outer shroud, the inner shroud, and the airfoil, which may be jointly called “the components,” each have a plurality of generally straight passageways therethrough which are structured to carry a cooling fluid in a closed loop. Because the passages are generally straight, the passages may be drilled in the components after casting Because the generally straight passageways can be drilled, for example by electro-discharge machining (“EDM”) or electrochemical machining (“ECM”), the vane assemblies and endcaps do not require a complicated casting.




The outer endcap casting includes an inlet port, for allowing a coolant to enter the vane assembly, and an exhaust port, which allows the heated coolant to be routed from the vane assembly to perform useful work elsewhere. The inner endcap casting includes a coolant inlet port. The vane casting includes an integral outer shroud, airfoil, an inner shroud. The outer shroud and inner shroud are structured to be mated with the outer endcap and the inner endcap respectively. When mated, both the inner endcap and the outer endcap form a plurality of plenums with their respective shrouds. The airfoil is essentially hollow, having a main coolant passage and at least one exhaust passage. The plurality of generally straight passages structured to cool the vane assembly are in fluid communication with the outer endcap coolant inlet port and exhaust port. The generally straight passageways within the components are structured to cooperate with the plurality of plenums to create a closed loop cooling system.




Manufacture and assembly of the vane assemblies begins with the casting of the end caps and vane casting. The outer endcap is cast with a coolant inlet port and an exhaust port. The vane casting includes a generally hollow airfoil having a main coolant passage and at least one main exhaust passage. A plurality of openings are machined into the vane casting outer shroud and inner shroud using EDM or ECM. Plugs, machined using wire EDM, are made to partially fill the openings. The cooling passages are then drilled in the components using EDM or ECM. The plugs are inserted into the shroud openings forming the shroud edge plenums. A bond coat is then applied to the components. The bond coat resists oxidation and acts as a bonding layer for the thermal barrier coating which is applied subsequently. The mating surfaces between the endcaps and the vane casting are then machined using conventional machining techniques. Additionally, other features, such as seal slots, end face joints, and shroud hook grooves, may be machined on the components. The endcaps are then heated and fitted into the shrouds forming an interference fit. The interference fit seals the plenums from each other. The joining of the endcaps to the shrouds creates a plurality of plenums in both the outer shroud and the inner shroud. The vane assembly then has a thermal barrier coating applied. Preferably, the airfoil has the coating applied first, then the shrouds and endcaps. Next, an internal aluminized steam corrosion protection is applied.











BRIEF DESCRIPTION OF THE DRAWINGS




A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:





FIG. 1

is a cross sectional view of a combustion turbine.





FIG. 2

is an explored isometric view of the vane.





FIG. 3

is a cross sectional view taken along line


3





3


of FIG.


2


.





FIG. 4

is a cross section view taken along line


4





4


of FIG.


2


.





FIG. 5

is a cross sectional view taken along line


5





5


of FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




As shown in

FIG. 1

, a combustion turbine


1


has a compressor assembly


2


, a combustor assembly


3


, and a turbine assembly


4


. In operation, the compressor assembly


2


compresses ambient air. The compressed air is channeled into the combustor assembly


3


where it is mixed with a fuel. The fuel and compressed air mixture is ignited creating a heated working gas. The heated working gas is typically at a temperature of between 2500 to 2900° F. (1371 to 1593° C.). The working gas is expanded through the turbine assembly


4


. The turbine assembly


4


includes a plurality of stationary vane assemblies


5


and rotating blades


6


. The rotating blades


6


are coupled to a central shaft


7


. The expansion of the working gas through the turbine assembly


4


forces the blades


6


to rotate creating a rotation in the shaft


7


. A cooling system


8


is structured to supply a coolant, such as, but not limited to, steam or compressed air to the vane assemblies


5


and blades


6


. The cooling system


8


is also structured to receive the used, or heated, coolant from the vane assemblies


5


and blades


6


.




As shown on

FIG. 2

, a vane assembly


5


includes an outer endcap


10


, a vane casting


30


and an inner endcap


50


. The vane casting


30


includes an outer shroud


32


, an inner shroud


34


, and an airfoil


36


. The outer shroud


32


and inner shroud


34


each have and inner face


31


(FIG.


3


),


51


respectively, which is in direct contact with the working gas. The outer endcap


10


is structured to be coupled to the cooling system


8


(

FIG. 1

) by a coolant inlet port


12


and an exhaust port


14


. The inner endcap


50


has a coolant inlet port


52


. The outer shroud


32


has a plurality of edge plenum openings


37


and edge plenum plugs


38


. The inner shroud


34


also includes a plurality of edge plenum openings


39


and edge plenum plugs


40


.




As shown in

FIGS. 3 and 4

, the outer endcap


10


, vane casting


30


, and inner endcap


50


each have a plurality of generally straight passages and passage segments therein


20


. The outer endcap


10


is structured to be coupled to the outer shroud


32


by an interference fit. Coupling the outer endcap


10


to the outer shroud


32


forms a plurality of outer shroud plenums


60


. The outer shroud plenums


60


include a first plenum


61


, a second plenum


62


and a third plenum


64


. An outer shroud edge plenum


63


is also located on the outer shroud


32


. The outer shroud edge plenum


63


is formed by plug


38


being inserted in opening


37


(FIG.


1


).




The inner endcap


50


is structured to be coupled to the inner shroud


34


by an interference fit. Coupling the inner endcap


50


to the inner shroud


34


forms a plurality of inner shroud plenums


70


. The inner shroud plenums


70


include a fourth plenum


71


, and a fifth plenum


72


. An inner shroud edge plenum


73


is also located on the inner shroud


34


. The inner shroud edge plenum


73


is formed by plug


40


being inserted in opening


39


(FIG.


1


).




Vane casting airfoil


36


includes a plurality of main passageways


25


(FIG.


3


),


29


(

FIG. 4

) and generally straight cooling passageways


27


. As shown most clearly in

FIG. 5

, the cooling passages


27


extend through the airfoil adjacent to an airfoil outer surface


28


. The cooling passages


27


may be turbulated to aid in heat transfer. The airfoil


36


further includes an airfoil coolant main passageway


25


and at least one airfoil exhaust main passageway


29


. The airfoil


36


may also include cooling passages


23


for an open loop or closed loop cooling system for cooling the trailing edge


24


. The cooling passages


27


are in fluid communication with both the third plenum


64


and the fifth plenum


72


.




The coolant circuit formed by the plurality of passageways


20


and plenums


60


,


63


,


70


,


73


includes a cooling circuit


80


, depicted in

FIG. 3

, and an exhaust circuit


90


depicted in FIG.


4


. The cooling circuit, shown in

FIG. 3

, begins with a coolant being supplied through coolant inlet port


12


and the outer endcap


10


. Coolant inlet port


12


is coupled to a main coolant inlet passage


82


. The main coolant inlet passage


82


is in fluid communication with a plurality of outer endcap first passages


84


which extend to and are in fluid communication with first plenum


61


. Preferably, the passages of the plurality of outer endcap first passages


84


each have a diameter between about 0.4 and 0.6 inches (1.0 to 1.5 cm). Each passage of the plurality of outer endcap first passages


84


may have a lip


83


that aids in deflecting a coolant into the passages


84


. Preferably, the plurality of outer endcap first passages


84


form a pattern, such as a spoke-like pattern, extending from the main coolant inlet passage


82


to the first plenum


61


. The outer shroud


32


includes a plurality of first passages


85


which extend between and are in fluid communication with first plenum


61


and outer shroud edge plenum


63


. The passages of the plurality of outer shroud first passages


85


are disposed to provide a uniform flow to the outer shroud edge plenum


63


.




The outer shroud


32


further includes a plurality of second passageways


86


which extend generally adjacent to outer shroud inner face


31


. At a point proximal to airfoil


36


, the plurality of outer shroud second passageways


86


each turn generally 90 degrees away from outer shroud inner face


31


and extend to and are in fluid communication with the second plenum


62


. The passages of the plurality of outer shroud second passages


86


each have a diameter between about 0.06 and 0.12 inches (0.15 to 0.30 cm). The second plenum


62


, as will be described below, is part of the exhaust circuit


90


.




Outer endcap main coolant inlet passage


82


is in further fluid communication with the third plenum


64


through a second plurality of outer endcap passageways


87


. The passages of the plurality of outer endcap second passages


87


each have a diameter between about 0.08 and 0.12 inches (0.20 to 0.30 cm). The third plenum


64


is in fluid communication with airfoil passages


27


and may include dividers


65


which direct a set amount of coolant flow to the airfoil passages


27


. The airfoil passages


27


are in further communication with the fifth plenum


72


. The fifth plenum


72


, as will be described below, is part of the exhaust circuit


90


.




The outer endcap main coolant inlet passage


82


is in further communication with airfoil main coolant passageway


25


. The airfoil main coolant passageway


25


is in fluid communication with inner endcap inlet


52


. The inner endcap inlet


52


is in fluid communication with a inner endcap main coolant passage


88


. Inner endcap main coolant passage


88


is in fluid communication with a plurality of inner endcap first passages


89


which extend outwardly from inner endcap main coolant passage


88


. Preferably, the plurality of inner endcap first passages


89


extend in a spoke-like pattern away from inner endcap main coolant passage


88


. The plurality of inner endcap first passages


89


are in fluid communication with the fourth plenum


71


. The inner shroud


34


includes a plurality of first passageways


90


which extend between and are in fluid communication with fourth plenum


71


and inner shroud, edge


73


. The inner shroud further includes a plurality of second passageways


91


which are in fluid communication with the inner shroud, edge plenum


73


and the fifth plenum


72


. The plurality of inner shroud second passages


91


extend adjacent to inner shroud inner face


51


. At a point proximal to airfoil


36


, the inner shroud plurality of second passageways each turn approximately 90 degrees away from the inner shroud inner face


51


and are in fluid communication with the fifth plenum


72


.




As shown in

FIG. 4

, the exhaust circuit


100


includes the fifth plenum


72


which is in fluid communication with airfoil main exhaust passage


29


. The outer endcap


10


includes a passageway


102


between the second plenum


62


and a main exhaust passage


103


. Main exhaust passage


103


is also in fluid communication with airfoil main exhaust passage


29


. Outer endcap main exhaust passage


103


is in further fluid communication with exhaust outlet port


14


.




As shown in

FIG. 2

, the coolant system may also include an open-loop airfoil trailing edge coolant circuit


9


. The airfoil trailing edge coolant circuit


9


includes at least one coolant inlet port


15


on endcap


10


. This inlet port


15


is in fluid communication with passage


23


(

FIG. 5

) which extends through airfoil


36


adjacent to the trailing edge


24


. Trailing edge


24


has a plurality of exhaust ports


22


(

FIG. 5

) which allow the coolant to exit the open loop and join the working gas.




In operation, a coolant, such as steam, air, or another fluid, is introduced by a cooling system


8


to a turbine vane assembly


5


. The coolant enters the turbine vane assembly


1


through coolant inlet port


12


. A portion of the coolant is directed by a lip


83


into the plurality of outer endcap first passages


84


. The coolant travels into first plenum


61


where it is distributed through the plurality of outer shroud first passages


85


to outer shroud, edge plenum


63


. The coolant than travels through outer shroud plurality of second passages


86


, along the outer shroud inner face


31


. The outer shroud plurality of second passages


86


returns the coolant, which has absorbed heat to second plenum


62


. This heated coolant is returned through passages


102


to the outer endcap main exhaust channel


103


and exits the system through exhaust port


14


.




A second portion of coolant which has entered outer endcap main coolant passage


82


travels through outer endcap second plurality of passages


87


into the third plenum


64


. The coolant is directed by a lip


83


into the third plenum


64


. Coolant within the third plenum


64


is delivered to the plurality of cooling channels


27


within the airfoil


36


. The coolant absorbs heat as it travels towards the inner shroud


34


where the cooling channels


27


are in fluid communication with the fifth plenum


72


. The fifth plenum


72


is in fluid communication with airfoil exhaust passage


29


which allows the heated coolant to exit through exhaust passage


103


and exhaust port


14


.




A third portion of coolant which enters the outer endcap


10


through outer endcap main coolant passage


82


is delivered to airfoil main coolant passage


25


. Coolant within the airfoil main coolant passage


25


is delivered through inner endcap inlet port


52


to the inner endcap main coolant passage


88


. Coolant within the inner end cap main coolant passage,


88


travels through the inner endcap first plurality of passages


89


to the fourth plenum


71


. Coolant within the fourth plenum


71


travels through the inner shroud first plurality of passages


90


to the inner shroud edge plenum


73


. The coolant is then delivered to the inner shroud, second plurality of passages


91


, which extend along inner shroud face


51


. These passages deliver the coolant to the fifth plenum


72


. As noted before, the fifth plenum


72


is in fluid communication with airfoil main exhaust passage


29


which further allows the coolant to exit the vane assembly


1


through exhaust port


14


. The exhaust port


14


returns the heated coolant to the cooling system


8


.




As can be seen on

FIGS. 3 and 4

, individually the plurality of passageways through outer endcap


10


, vane casting


30


, and inner endcap


50


are generally straight or are comprised of straight segments. Such straight passageways may be formed by EDM or ECM drilling. As such, the outer endcap


10


, the vane casting and the inner endcap


50


may be cast as a solid piece having the proper perimeter configuration but without having any passageway formed as part of the casting. For ease of manufacture, however, certain large passages, such as the outer shroud inlet port


12


and exhaust port


14


, and inner shroud coolant inlet port


52


may be cast, rather than drilled. The outer shroud edge plenum


63


and inner shroud edge plenum


73


may be formed by removing a portion of the shrouds


32


,


34


using ECM to form openings


37


and


39


(FIG.


2


). The openings


37


,


39


are partially filled with plugs


38


,


40


. Plugs


38


,


40


may be cut to precise tolerances by using wire EDM.




Accordingly, the vane assembly


5


may be formed by casting the outer endcap


10


, vane casting


30


, and inner endcap


50


as generally solid bodies. The outer endcap main coolant passage


82


, outer endcap first plurality of passages


84


, and outer endcap second plurality of passages


87


are drilled in the outer endcap


10


by EDM or ECM drilling. The vane casting


30


may have openings


37


,


39


cut by EDM at the location of the outer shroud edge plenum


63


, and the inner shroud edge plenum


73


. After the openings


37


,


39


are cut, the outer shroud first plurality of passages


85


, outer shroud second plurality of passages


86


, inner shroud first plurality of passages


90


and inner shroud second plurality of passage


91


may be drilled using EDM or ECM. Additionally, the plurality of airfoil passages


27


may be formed using ECM. Inner endcap


50


may have inner endcap first passages


89


formed by EDM or ECM.




Construction of the vane assembly


5


continues with the plugs


38


being inserted into the outer shroud openings


37


, thereby forming the outer shroud edge plenum


63


. Additionally, the plugs


40


are inserted into the inner shroud openings


39


, thereby forming the inner shroud edge plenums


73


.




The internal surfaces of the endcaps


10


,


50


, as well as the internal surfaces of the vane casting


30


are then machined using conventional methods. Such conventional machining is applied to the grooves on the outer shroud and the end face joints of the inner and outer shrouds. Additionally, seal slots may be machined on the outer surface of the outer shroud and the inner shroud. Following the machining, the outer endcap


10


is joined with outer shroud


32


. As shown on

FIG. 4

, this joining creates an interference fit at locations


120


. As stated above, when outer endcap


10


is coupled with outer shroud


32


, the first, second, and third plenums


61


,


62


, and


63


are formed. Similarly, inner endcap


50


is coupled to inner shroud


34


forming an interference fit at locations


122


and further forming the fourth and fifth plenums


71


,


72


. Following the joining of the endcaps


10


,


50


to the vane casting


30


, the vane assembly


5


has a thermal bond coating applied thereto. Preferably, the thermal bond coating is applied to the airfoil


36


first, then to the inner shroud/inner endcap


34


,


50


and outer shroud/outer endcap


32


,


10


. The vane assembly


5


then has an internal aluminum coating applied thereto.




While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.



Claims
  • 1. A combustion turbine vane assembly comprising:an outer endcap having a plurality of generally straight cooling passages and passage segments therethrough; an inner endcap having a plurality of generally straight cooling passages and passage segments therethrough; a vane casting having an outer shroud, an airfoil, and an inner shroud; said outer shroud, airfoil and inner shroud each having a plurality of generally straight cooling passages and passage segments and wherein all said straight cooling passages and passage segments are in fluid communication, wherein said airfoil cooling passages extend from said outer shroud to said inner shroud; wherein said outer endcap is coupled to said outer shroud so that all said outer endcap cooling passages, said outer shroud cooling passages and airfoil cooling passages are in fluid communication; and said inner endcap is coupled to said inner shroud so that all said inner end cap cooling passages, said inner shroud cooling passages and airfoil cooling passages are in fluid communication.
  • 2. The turbine vane assembly of claim 1, wherein:said outer endcap is structured to form a plurality of outer shroud plenums when said outer end cap is coupled to said outer shroud; and said outer shroud plenums are in fluid communication with said outer endcap passages and said outer shroud passages.
  • 3. The turbine vane assembly of claim 2, wherein:said inner endcap is structured to form a plurality of inner shroud plenums when said inner end cap is coupled to said inner shroud; and said inner shroud plenums are in fluid communication with said inner endcap passages and said inner shroud passages.
  • 4. The turbine vane assembly of claim 3, wherein said outer endcap includes a main coolant inlet port and at least one main coolant exhaust port.
  • 5. The turbine vane assembly of claim 4, wherein said inner endcap includes a main coolant inlet port.
  • 6. The turbine vane assembly of claim 5, wherein:said airfoil includes a main coolant passage and at least one main exhaust passage; said airfoil main coolant passage in fluid communication with said outer endcap main coolant inlet port; said airfoil main coolant passage coupled to said inner endcap main coolant inlet port; said airfoil at least one main exhaust passage in fluid communication with said outer endcap main exhaust port.
  • 7. The turbine vane assembly of claim 6, wherein:said coupling of said outer endcap to said outer shroud creates a first plenum, a second plenum, and a third plenum; said plurality of outer endcap passages and passage segments includes a plurality of outer endcap first passages in fluid communication with said outer endcap main coolant inlet port and said first plenum; said plurality of outer shroud passages and passage segments includes a plurality of outer shroud first passages, an edge plenum, a plurality of outer shroud second passages, and an inner face; said plurality of outer shroud first passages in fluid communication with said first plenum and said outer shroud edge plenum; said plurality of outer shroud second passages in fluid communication with said outer shroud edge plenum and said second plenum, and extending along substantially all of said outer shroud inner face.
  • 8. The turbine vane assembly of claim 7, wherein:said plurality of outer endcap first passages each have a lip; and said lip structured to direct a portion of coolant from said outer endcap main coolant inlet port into said plurality of outer endcap first passages.
  • 9. The turbine vane assembly of claim 8, wherein:said coupling of said inner endcap to said inner shroud creates a fourth and fifth plenum; said plurality of inner endcap passages and passage segments includes a plurality of inner endcap first passages in fluid communication with said inner endcap main coolant inlet port and said fourth plenum; said plurality of inner shroud passages and passage segments includes a plurality of inner shroud first passages, an inner shroud edge plenum, a plurality of inner shroud second passages, and an inner face; said plurality of inner shroud first passages in fluid communication with said fourth plenum and-said inner shroud edge plenum; and said plurality of inner shroud second passages in fluid communication with said inner shroud edge plenum and said fifth plenum, and extending along substantially all of said inner shroud inner face.
  • 10. The turbine vane assembly of claim 9, wherein:said third plenum is disposed adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 11. The turbine vane assembly of claim 10, wherein:said fifth plenum is in fluid communication with said outer endcap exhaust port; and said second plenum is in fluid communication with said outer endcap exhaust port.
  • 12. The turbine vane assembly of claim 7, wherein:said coupling of said inner endcap to said inner shroud creates a fourth and fifth plenum; said plurality of inner endcap passages and passage segments includes a plurality of inner endcap first passages in fluid communication with said inner endcap main coolant inlet port and said fourth plenum; said plurality of inner shroud passages and passage segments includes a plurality of inner shroud first passages, an inner shroud edge plenum, a plurality of inner shroud second passages, and an inner face; said plurality of inner shroud first passages in fluid communication with said fourth plenum and said inner shroud edge plenum; and said plurality of inner shroud second passages in fluid communication with said inner shroud edge plenum and said fifth plenum, and extending along substantially all of said inner shroud inner face.
  • 13. The turbine vane assembly of claim 12, wherein:said third plenum is disposed adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 14. The turbine vane assembly of claim 13, wherein:said fifth plenum is in fluid communication with said outer endcap exhaust port; and said second plenum is in fluid communication with said outer endcap exhaust port.
  • 15. The turbine vane assembly of claim 6, wherein:said coupling of said outer endcap and said outer shroud forms a third plenum; said coupling of said inner endcap to said inner shroud forms a fifth plenum; said third plenum being adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 16. The turbine vane assembly of claim 15, wherein said fifth plenum is in fluid communication with said outer endcap exhaust port.
  • 17. A combustion turbine comprising:a compressor assembly; a combustor Assembly; a turbine assembly having a plurality of vane assemblies; said vane assemblies comprising: an outer endcap having a plurality of generally straight cooling passages and passage segments therethrough; an inner endcap having a plurality of generally straight cooling passages and passage segments therethrough; a vane casting having an outer shroud, an airfoil, and an inner shroud; said outer shroud, airfoil and inner shroud each having a plurality of generally straight cooling passages and passage segments and wherein all said straight passages and passage segments are in fluid communication, wherein said airfoil cooling passages extend from said outer shroud to said inner shroud; wherein said outer endcap is coupled to said outer shroud so that all said outer endcap cooling passages, said outer shroud cooling passages and airfoil cooling passages are in fluid communication; and said inner endcap is coupled to said inner shroud so that all said inner end cap cooling passages, said inner shroud cooling passages and airfoil cooling passages are in fluid communication.
  • 18. The combustion turbine of claim 17, wherein:said outer endcap is structured to form a plurality of outer shroud plenums when said outer end cap is coupled to said outer shroud; and said outer shroud plenums are in fluid communication with said outer endcap passages and said outer shroud passages.
  • 19. The combustion turbine of claim 18, wherein:said inner endcap is structured to form a plurality of inner shroud plenums when said inner end cap is coupled to said inner shroud; and said inner shroud plenums are in fluid communication with said inner endcap passages and said inner shroud passages.
  • 20. The combustion turbine of claim 19, wherein said outer endcap includes a main coolant inlet port and at least one main coolant exhaust port.
  • 21. The combustion turbine of claim 20, wherein said inner endcap includes a main coolant inlet port.
  • 22. The combustion turbine of claim 21, wherein:said airfoil includes a main coolant passage and at least one main exhaust passage; said airfoil main coolant passage in fluid communication with said outer endcap main coolant inlet port; said airfoil main coolant passage coupled to said inner endcap main coolant inlet port; said airfoil at least one main exhaust passage in fluid communication with said outer endcap main exhaust port.
  • 23. The combustion turbine of claim 22, wherein:said coupling of said outer endcap to said outer shroud creates a first plenum, a second plenum, and a third plenum; said plurality of outer endcap passages and passage segments includes a plurality of outer endcap first passages in fluid communication with said outer endcap main coolant inlet port and said first plenum; said plurality of outer shroud passages and passage segments includes a plurality of outer shroud first passages, an edge plenum, a plurality of outer shroud second passages, and an inner face; said plurality of outer shroud first passages in fluid communication with said first plenum and said outer shroud edge plenum; said plurality of outer shroud second passages in fluid communication with said edge plenum and said second plenum, and extending along substantially all of said outer shroud inner face.
  • 24. The combustion turbine of claim 23, wherein:said plurality of outer endcap first passages each have a lip; and said lip structured to direct a portion of coolant from said outer endcap main coolant inlet port into said plurality of outer endcap first passages.
  • 25. The combustion turbine of claim 24, wherein:said coupling of said inner endcap to said inner shroud creates a fourth and fifth plenum; said plurality of inner endcap passages and passage segments includes a plurality of inner endcap first passages in fluid communication with said inner endcap main coolant inlet port and said fourth plenum; said plurality of inner shroud passages and passage segments includes a plurality of inner shroud first passages, an inner shroud edge plenum, a plurality of inner shroud second passages, and an inner face; said plurality of inner shroud first passages in fluid communication with said fourth plenum and said inner shroud edge plenum; and said plurality of inner shroud second passages in fluid communication with said inner shroud edge plenum and said fifth plenum, and extending along substantially all of said inner shroud inner face.
  • 26. The combustion turbine of claim 25, wherein:said third plenum is disposed adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 27. The combustion turbine of claim 26, wherein:said fifth plenum is in fluid communication with said outer endcap exhaust port; and said second plenum is in fluid communication with said outer endcap exhaust port.
  • 28. The combustion turbine of claim 23, wherein:said coupling of said inner endcap to said inner shroud creates a fourth and fifth plenum; said plurality of inner endcap passages and passage segments includes a plurality of inner endcap first passages in fluid communication with said inner endcap main coolant inlet port and said fourth plenum; said plurality of inner shroud passages and passage segments includes a plurality of inner shroud first passages, an inner shroud edge plenum, a plurality of inner shroud second passages, and an inner face; said plurality of inner shroud first passages in fluid communication with said fourth plenum and said inner shroud edge plenum; and said plurality of inner shroud second passages in fluid communication with said inner shroud edge plenum and said fifth plenum, and extending along substantially all of said inner shroud inner face.
  • 29. The combustion turbine of claim 28, wherein:said third plenum is-disposed adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 30. The combustion turbine of claim 29, wherein:said fifth plenum is in fluid communication with said outer endcap exhaust port; and said second plenum is in fluid communication with said outer endcap exhaust port.
  • 31. The combustion turbine of claim 22, wherein:said coupling of said outer endcap and said outer shroud forms a third plenum; said coupling of said inner endcap to said inner shroud forms a fifth plenum; said third plenum being adjacent to said airfoil; said third plenum having inlets allowing fluid communication between said outer endcap main coolant inlet port and said third plenum; said airfoil having an outer surface and cooling passages extending adjacent to said outer surface; and said airfoil cooling passages in fluid communication with said third plenum and said fifth plenum.
  • 32. The combustion turbine of claim 31, wherein said fifth plenum is in fluid communication with said outer endcap exhaust port.
  • 33. A method of constructing a turbine vane assembly comprising the steps:(a) casting an outer endcap, an inner endcap, and a vane casting, said vane casting having an outer shroud, an airfoil and an inner shroud; (b) drilling generally straight passages and passage segments in said outer endcap, inner endcap, and vane casting where said passages are structured to create a cooling circuit and an exhaust circuit; (c) joining said outer endcap to said outer shroud, wherein said joining forms a plurality of outer shroud plenums between said outer endcap and said outer shroud wherein said outer shroud plenums are in fluid communication with the outer endcap plurality of passages and passage segments and the outer shroud plurality of passages and passage segments; (d) joining said inner endcap to said inner shroud, wherein said joining forms a plurality of inner shroud plenums between said inner endcap and said inner shroud wherein the inner shroud plenums are in fluid communication with the inner endcap plurality of passages and passage segments and the inner shroud plurality of passages and passage segments.
  • 34. The method of claim 33 further comprising the step of applying a series of coatings to said vane assembly.
  • 35. The method of claim 34 wherein:said passages are drilled using EDM drilling.
  • 36. The method of claim 35 further including the steps of:(a) cutting a plurality of openings in said outer shroud; (b) cutting a plurality of openings in said inner shroud; (c) providing a plurality of plugs structured to fit within said openings; (d) inserting said plugs in said openings thereby forming an outer shroud edge plenum and an inner shroud edge plenum.
  • 37. The method of claim 34 wherein:said passages are drilled using ECM drilling.
  • 38. The method of claim 37 further including the steps of:(a) cutting a plurality of openings in said outer shroud; (b) cutting a plurality of openings in said inner shroud; (c) providing a plurality of plugs structured to fit within said openings; (d) inserting said plugs in said openings thereby forming an outer shroud edge plenum and an inner shroud edge plenum.
GOVERNMENT CONTRACT

The Government of the United States of America has certain rights in this invention pursuant to Contract No. DE-FC21-95MC32267 awarded by the U.S. Department of Energy.

US Referenced Citations (15)
Number Name Date Kind
3807892 Frei et al. Apr 1974 A
4283822 Muth et al. Aug 1981 A
4288201 Wilson Sep 1981 A
4314442 Rice Feb 1982 A
5120192 Ohtomo et al. Jun 1992 A
5246340 Winstanley et al. Sep 1993 A
5320483 Cunha et al. Jun 1994 A
5340274 Cunha Aug 1994 A
5711650 Tibbott et al. Jan 1998 A
5743708 Cunha et al. Apr 1998 A
5829245 McQuiggan et al. Nov 1998 A
5913658 Sexton et al. Jun 1999 A
5953900 Bannister et al. Sep 1999 A
6019572 Cunha Feb 2000 A
6261054 Bunker et al. Jul 2001 B1
Foreign Referenced Citations (1)
Number Date Country
0911489 Apr 1999 EP