1. Field of the Invention
The invention relates generally to the field of manufacturing and processing of product in particle form, such as pellets. More specifically, the invention relates to apparatus for cooling, removal of fines and dust, and classification of pelletized product after forming the product.
2. Background Art
Products in the form of particles or pellets may be made, for example, by extrusion of material heated near above its fusion temperature among other processes. Examples of such materials include thermoplastic. After extrusion and cutting to selected lengths, the product pellets may be subjected to processes such as removal of small size material particles, referred to as “streamers”, “ribbons” and “angel hairs.” The product pellets may also be cooled, have dust removed from the exterior surface of the pellets, and then be classified, e.g., by size, so that oversize pellets may be removed from the product.
An example of a device that may perform a combination of the foregoing functions is sold by The Witte Company, 507 Route 31 South. Washington, N.J. 07882-0047 under its model designation “400 Dryer/Cooler/Classifier.” A side view of such example device is shown in
The device shown in
A cooling apparatus for selected size particulate product according to one aspect of the invention includes a substantially enclosed housing. A first cooling screen is disposed in the housing and is configured to receive the particulate product. The first cooling screen is configured to move the particulate product along a surface by gravity when the first cooling screen is subjected to vibration. A first duct is coupled to the first cooling screen and is configured to move cooling fluid through the first cooling screen through a wall of the housing. A second cooling screen is disposed in the housing below the first cooling screen and is configured to receive the particulate product after discharge from the first cooling screen. The second cooling screen is configured to move the particulate product along a surface by gravity when the second cooling screen is subjected to vibration. A second duct is coupled to the second cooling screen and configured to move cooling fluid through the second cooling screen through a wall of the housing. A product collector is configured to receive particulate product after moving along a surface of the second cooling screen. A vibrator coupled to the housing and configured to impart selected vibratory motion to the housing.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
An example pelletized product cooler/classifier device is shown in cross-sectional view in
The cover 12 may be generally dome shaped as shown in
The housing segments 10A and the cover 12 may be made from any suitable material for an enclosure, such as steel, stainless steel, woven mesh reinforced plastic, or fiber reinforced plastic, for example. The thickness and strength of the material used to make the housing segments 10A and the cover 12 may be selected to provide sufficient structural support for the functional components (explained below) disposed inside the housing 11 under vibration imparted to the housing 11 during operation of the device 10. The vibration will be explained further below.
The upper cooling screen 18 referred to above is preferably generally conically shaped, may have a circular outer lateral edge, and is preferably configured such that the slope of the upper surface thereof is directed downwardly from the center to the outer lateral edge of the upper cooling screen 18. The upper cooling screen may have a mesh size selected to enable product pellets (not shown) to move along the upper surface of the screen 18 without passing therethrough, while enabling movement through the upper cooling screen 18 of the cooling fluid (typically air) and “fines” (e.g., ribbons, angel hairs and streamers). The external diameter of the upper cooling screen 18 is preferably selected to create an annular space 18A between the outer edge of the upper cooling screen 18 and the interior wall of the associated-housing segment 10A.
The upper cooling screen 18 may be mounted to the top of an upper cooling screen duct 20. The upper cooling screen duct 20 may have a screen opening 20B sized and shaped to substantially match the exterior lateral edge of the upper cooling screen 18. The upper cooling screen 18 may be affixed to the screen opening 20B using, for example, a band clamp 10CC or similar device, although the exact type of device used to affix the screen 18 to the opening 20B is not intended to limit the scope of the present invention. In order to obtain certain possible benefits of the device of the present invention, it is contemplated that any device used to affix the screen 18 to the opening 20B is operated to enable relatively easy removal and replacement of the screen 18 on the upper cooling screen air duct 20. The upper cooling screen duct 20 may be formed to provide an enclosed cooling fluid (e.g., air) passage from the screen opening 20B to an external duct opening 20A disposed outside the associated housing segment 10A. In one example, the upper cooling screen duct 20 may include a substantially cylindrical or rectangular conduit that passes through a similarly shaped opening in the wall of the housing segment 10A. In some examples, the combination of the upper cooling screen 18, the upper cooling screen duct 20 and the associated housing segment 10A may be assembled as a unit prior to assembly of the entire device.
A lower cooling screen 22 may be disposed in a housing segment 10A disposed adjacent to and below the upper cooling screen 18. The lower cooling screen 22 may have similar or different mesh size than the upper cooling screen 18, and such size is intended to enable the product pellets (not shown) to move along the upper surface of the lower cooling screen 22 without passing therethrough, just as is the case with the upper cooling screen 18. The lower cooling screen 22 may have an external diameter substantially the same as the internal diameter of the housing segment 10A, although for purposes of function, it is only necessary for the lower cooling screen 22 to be able to efficiently receive product pellets that fall from the outer lateral edge of the upper cooling screen 18. A lower cooling screen duct 24 may be formed with respect to the lower cooling screen 22 in a manner corresponding to the form of the upper cooling screen duct 20 with respect to the upper cooling screen 18, and the lower cooling duct 24 may include a corresponding external duct opening 24A for introduction or extraction of cooling fluid, as will be further explained below. The lower cooling screen 22 can also be generally conically shaped, and may include a slope that extends downwardly from the exterior lateral edge to the center, that is, in a direction opposed to that of the slope of the upper cooling screen 18. The lower cooling screen 22 may include an opening 22A in the center to enable passage therethrough of pellets after cooling has taken place on the lower cooling screen 22. The lower cooling screen 22, lower cooling screen duct 24 and associated housing segment 10A may be preassembled in some examples, just as the combination including the upper cooling screen 18.
Both die upper cooling screen 18 and the lower cooling screen 22, if made as explained above, would be coupled to the respective screen ducts 20, 24 so that substantially all the cooling fluid moved through the ducts 20, 24 must pass through the respective cooling screen 18, 22. Such configuration may improve cooling efficiency by causing substantially all the cooling fluid to be directed through the cooling screens.
In some examples, the device 10 may include more than one each of upper cooling screen and lower cooling screen. Advantageously, other examples of a device including cooling screens as explained above, being modular in structure, may include several upper and lower cooling screens successively coupled on top of each other in the same manner as the upper and lower cooling screens shown in
After the cooled pellets move through the center opening 22A in the lower cooling screen 22, they may be discharged onto a first classification plate 26. The first classification plate 26 may be disposed in an associated housing segment 10A and may include a perforated plate that includes opening (not shown in
The example shown in
Pellets that pass through the second classification plate 30, and are thus deemed to be correct size for the particular pelletized product, may pass to a dedusting plate or screen 35 in a housing segment 10A disposed below the second classification plate 30. The dedusting plate 35 may be affixed to the top of a suitably shaped duct 36 having an external discharge opening 38 through the wall of the housing segment 10A to enable extraction of dust that passes through the dedusting plate 35.
Pelletized product can be extracted from the interior of the housing 11 through a product discharge outlet 34 coupled through a wall of the associated housing segment 10A.
The base plate 10B may form part of a device support frame that is movably affixed to a base frame 40. Movable affixing of the base plate 10B to the base frame 40 may include suspension by devices such as springs 44, 46 that enable the base plate 10B to move with respect to the base frame 40 in any selected direction. The base frame 40 may be made more easily transportable by including casters 40A at selected positions thereon to make contact between the frame 40 and the ground or floor surface. A vibrator 42 may be coupled between the base frame 40 and the base plate 10B to provide vibratory motion to the housing in selected directions and with certain selected types of motion. The vibrator 42 may, but need not necessarily provide motion along all three mutually orthogonal directions, such as in a three dimensional oscillatory pattern. The type of vibratory motion may be optimized to provide particular results along the upper surfaces of the cooling screens 18, 22, such as reducing the amount of piling of pellets on top of each other (i.e., increasing the number of pellets confined to a single layer) and reducing any backup of pellets along any screen, plate or duct. The vibratory motion also may be selected to increase the removal of fines and dust from the pellets. The use of such a vibrator may provide advantages in efficiency of operation of the device 10 as contrasted with prior art cooler/classifiers, which provide vibratory motion of the screens along essentially only one direction transverse to the direction of transport of the pellets.
Referring to
A device made as explained above according to various aspects of the invention, and once again referring to
The structure of the housing 11 makes it possible to perform cooling, classification, dedusting and fines removal inside a substantially sealed enclosure. Such enclosure may make it possible to reduce contamination of the pellets during processing, or may make it possible to process pellets that may be reactive with certain cooling fluids, including air. It is within the scope of the present invention to use non-reactive cooling fluids, such as nitrogen or noble gases for the cooling fluid in the event reactive pellets are processed. Another possible advantage is that the efficiency with which the cooling fluid moves over the pellets on the cooling screens (18, 22 in
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
2416499 | Saxe | Feb 1947 | A |
2452362 | Erisman | Oct 1948 | A |
2698086 | Vogel | Dec 1954 | A |
3061095 | O'Malley | Oct 1962 | A |
3416660 | Larsson | Dec 1968 | A |
3452868 | Miller | Jul 1969 | A |
3485363 | Talley, Jr | Dec 1969 | A |
3819050 | Lower | Jun 1974 | A |
3928188 | Link et al. | Dec 1975 | A |
3963608 | Zimmermann et al. | Jun 1976 | A |
4125945 | Westelaken | Nov 1978 | A |
4293407 | Locker | Oct 1981 | A |
4394394 | Nava et al. | Jul 1983 | A |
4415444 | Guptail | Nov 1983 | A |
4686779 | Wyatt et al. | Aug 1987 | A |
4785554 | Hederer et al. | Nov 1988 | A |
4968366 | Hukki et al. | Nov 1990 | A |
6230421 | Reed et al. | May 2001 | B1 |
6613191 | Rienecker et al. | Sep 2003 | B2 |
6702120 | Forslund et al. | Mar 2004 | B1 |
7373996 | Martin et al. | May 2008 | B1 |
7445170 | Cialone et al. | Nov 2008 | B2 |
8113356 | Burnett | Feb 2012 | B2 |
20020153287 | Fallon | Oct 2002 | A1 |
20040094641 | Chen | May 2004 | A1 |
20050072717 | Purohit et al. | Apr 2005 | A1 |
20050209354 | Martel et al. | Sep 2005 | A1 |
20070045158 | Johnson | Mar 2007 | A1 |
20100062529 | Zimmermann et al. | Mar 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090277818 A1 | Nov 2009 | US |