Cooling and heating platform

Information

  • Patent Grant
  • 10859295
  • Patent Number
    10,859,295
  • Date Filed
    Wednesday, April 12, 2017
    7 years ago
  • Date Issued
    Tuesday, December 8, 2020
    3 years ago
Abstract
A cooling and heating platform is disclosed. An example cooling and heating platform includes an operating chamber with an operating liquid in the operating chamber. The example cooling and heating platform includes a heat exchanger in the operating chamber. The heat exchanger exchanges heat between the operating liquid and an application fluid in the heat exchanger to maintain the application fluid at a predetermined temperature for an application.
Description
BACKGROUND

Cooling and heating is provided for a wide array of different end-uses. These include, but are not limited in application to, the food industry (from farming, to food preparation, to food service), automotive, marine, and recreational vehicles, residential and commercial HVAC, manufacturing and fabrication, the military, and medical applications. Most cooling and heating systems involve heat transfer. That is, either heat is added or removed to provide the desired heating or cooling respectively.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic overview of an example cooling and heating platform.



FIG. 2 illustrates an example application configuration of the cooling and heating platform.





DETAILED DESCRIPTION

A cooling and heating platform is disclosed. In an example, the cooling and heating platform may be implemented as a cooling and heating platform that is inherently operating at a selected temperature, controlled via vacuum, hygroscopic, electrostatic system(s), and/or a heating element, e.g., in a combinatory manner. The cooling and heating platform may provide a scalable chilling and heating solution. The cooling and heating platform may be implemented in a wide variety of cooling, refrigeration, and/or heating applications.


In an example, the cooling and heating platform manages pressure within an operating chamber to maintain a steady operating temperature based on the boiling point of an “operating liquid.” In an example, the operating liquid is an inexpensive and environmentally friendly “refrigerant.”


By way of illustration, the refrigerant may be water-based and thus ecologically-friendly. An example water-based refrigerant includes, but is not limited to, distilled water. However, other operating liquids may also be implemented. Configurations utilizing a variety of other operating liquids can operate in different temperature ranges, allowing for heating and chilling solutions for an expanded range of applications.


Unlike standard refrigeration or ice, the example cooling and heating platform provides chilling to a specific temperature. The cooling and heating platform is not limited to extreme chilling that requires external control to achieve the desired temperature. This is a particularly important aspect in applications such as, but not limited to, physical therapy. In physical therapy, using too cold of a temperature (e.g., freezing) can have adverse health effects.


The cooling and heating platform is a viable replacement for many chilling/refrigeration devices that are based on the use of standard refrigerants (e.g., CFC's and their replacements). As such, cooling technologies based on the cooling platform may be implemented to reduce the climate impacts from world-wide use of CFC's and their replacements.


Before continuing, it is noted that as used herein, the terms “includes” and “including” mean, but is not limited to, “includes” or “including” and “includes at least” or “including at least.” The term “based on” means “based on” and “based at least in part on.”


The term “operating liquid” means any suitable matter to absorb energy via change of phase. The term “operating chamber” means any suitable partially or fully sealed vessel or container that houses a phase-change mechanism.


The term “heat exchanger” means a device used to transfer heat from one medium to another.


The term “application interface” means any mechanism that enables the transfer of thermal energy between the cooling/heating platform and an application that utilizes the heating/cooling provided by the platform. This may include but is not limited to an “application fluid” that physically transfers heat by flowing or circulating through a heat exchanger and the application.


In addition, the term “thermal battery” as used herein means any suitable device or matter to store thermal energy. A thermal battery, e.g. additional operating liquid, provides the ability to satisfy burst chilling/heating requirements that exceed the instantaneous capacity of the device.


The term “operating liquid supply” means a device that adds operating liquid to the operating chamber.


The term “hygroscopic material” means a material that adsorbs operating liquid vapor from the platform, e.g., from the operating chamber.


The term “electrostatic device” means a device that causes operating liquid vapor atoms/molecules to move in a desired path due to electrostatic fields, e.g., attracting ionized vapor to a anode or cathode for removal from the operating chamber.


The term “bypass switch” means a device that reroutes application fluid depending on the mode selected by the user.


The term “control system” means a system that monitors performance, maintains, displays and/or records the state, and controls the platform relative to a desired mode selected by the user.


The term “overpressure” means pressure above ambient atmospheric pressure.



FIG. 1 is a diagrammatic overview of an example cooling and heating platform 10. The example cooling and heating platform 10 includes a thermally isolated operating chamber 12. A thermal isolation layer 14 is provided around the operating chamber 12 and a heat exchanger 20. The operating chamber 12 includes a thermal battery 16 and an operating liquid 18.


The example cooling and heating platform 10 also includes an operating liquid supply 22. Example configurations of the cooling and heating platform 10 may include a total load of operating liquid 18, e.g., to sustain operation through a nominal operational period.


The operating liquid supply 22 may include a mechanism to reload and restart the device (e.g., open, refill, and then reestablish vacuum).


In another example, operating liquid 18 can be added during operation by introducing operating liquid 18 from the operating liquid supply 22 (e.g., an external source) directly into the operating chamber 12 without breaking vacuum.


Example implementations may include at least one sensor 24, e.g. temperature, pressure, or operating liquid level, on the interior of the operating chamber 12. A vapor removal mechanism 26 may be provided. A fluid circulating pump 28 may be provided to move the application fluid through the heat exchanger 20.


The cooling and heating platform 10 may be configured with one or more connectors that provide access to heat exchanger 20. The connectors may be commercially available (e.g., standard water hose connection), or specifically designed to a particular application. A pressure management device 32, e.g. a vacuum pump, and an operating liquid recovery mechanism 52 may be provided.


Control connections may be provided to control the pressure management device and operating liquid recovery mechanism 52 based on feedback from at least one sensor 24 for the operating chamber 12 and/or for the application 30 to a control system 40 to orchestrate any/all elements of the platform.


The cooling and heating platform 10 can be incorporated into any application 30 that utilizes traditional chilling/refrigeration, and can also be configured to support a wide range of cooling and heating applications. The cooling and heating platform also supports many, if not most, everyday chilling/refrigeration applications 30 and a range of cooling and/or heating applications 30. Examples of applications 30 include, but are not limited to an in-line fluid cooler/heater and a portable cold storage device


An in-line fluid cooler/heater may have application to the following:

    • a. Liquor brewing (beer, whisky, etc.)—brewers struggle with cooling wort fast enough so as to mitigate wort loss and contamination.
    • b. Dairy farming—when cooling milk recovered during the dairy milking process, massive quantities of water are used to cool milk during delivery from collection to processing by pipes on the farm. The device eliminates all water waste by cooling collected milk before receipt by processing.
    • c. Breast milk processing—when breast milk is pumped, it must be cooled before refrigeration is allowed; current process takes longer than desired which risks contamination and loss. The device cools breast milk from body temperature to 40° F., ready for storage.
    • d. Food service (microbreweries, brew-pubs, restaurants)—Brew masters struggle with ways to improve the quality of the consumer's beer experience. Serving beer at the optimum temperature for taste is desirable but difficult. The device allows beer to be served at its intended or optimum temperature. In addition, in the fight for market share, breweries compete for a tap presence in restaurants, taverns, bars, etc. Other foods may require warming.


A portable cold storage device may have application to the outdoor recreation (boating, RV, hunting, camping, etc.) industry—Consumers want convenience and good products to enjoy their outdoor activities. During recreational activities, people are always running for more ice. Current built in boat coolers only hold ice for a few hours. With the cooling system retrofitted into an existing built-in cooler or incorporated into new cooler designs, purchasing a premium cooler will no longer be necessary.


A vacuum-based version as detailed above may have application to the following:

    • a. Commercial construction.
    • b. Residential construction.
    • c. Automotive (cars and RVs).


A version for manufacturing-based industries may have application to the following (e.g., for equipment and process cooling):

    • a. Plastics.
    • b. Foundries.
    • c. Printing.
    • d. Rubber.
    • e. Plating.
    • f. Machine Fabrication.


A food service version may have application to the following:

    • a. Residential refrigerators.
    • b. Food service walk-in coolers (restaurants, etc.).
    • c. Food retailers (grocery stores, wholesalers, liquor stores, etc.).


A medical or therapy-based version may have application to the medical (inpatient/outpatient, sports/physical therapy, etc.)—since the main premise in medicine is all about healing, the medical industry actively seeks faster recovery times in order to improve healing success rates. The device provides hot and cold therapy at therapeutic temperatures within specific limits determined to be medically safe.


A transportation-based version may have application to the following:

    • a. Medical (organ transport—ground or air).
    • b. Food (food transport—ground or air).


Example configurations of the cooling and heating platform 10 may be provided for different operating temperatures to support other chilling and/or heating applications. The operating liquid 18 may be selected based on design considerations, such as but not limited to, optimizing the ability to maintain the target operating temperature required for the application. Other considerations may include, but are not limited to, the pressure/vacuum and environmental/safety considerations of the operating liquid 18.


In an example, the cooling and heating platform 10 may be portable (e.g., hand carried), semi-portable (e.g., movable with the assistance of a hand truck, or similar), or fixed (e.g., requiring heavy equipment to be moved).


Example operation of the cooling and heating platform 10 is based on maintaining the pressure in a chamber or other vessel 12 containing the operating liquid 18 at a level of vacuum/overpressure (e.g., from pressure management device 32 and operating liquid recovery mechanism 52) such that the boiling point of the operating liquid 18 corresponds to the target chilling (or heating) temperature of the device or application 30. Chilling/refrigeration is provided by passing an application fluid to be chilled or heated (e.g., within return line 34) through a heat exchanger 20 (e.g., coils) immersed in the operating liquid 18 within the operating chamber 12 and to the application 30 (e.g., via supply line 38).


For the chilling configuration, having water as the operating liquid 18 in the operating chamber 12, the level of vacuum may be maintained by mechanical pumping and/or, for example, the use of hygroscopic materials, such as but not limited to these two, or similar mechanisms that remove water vapor from the operating chamber 12.


The chilling capacity of the cooling and heating platform 10 is determined primarily by the heat exchanger implementation and the capacity of the cooling and heating platform 10 for removing operating liquid vapor from the operating chamber 12. The platform may be configured to maintain the operating liquid in its liquid state in order to maximize the mixing effect of boiling, but configurations cause the operating liquid to change state to solid are also possible. Phase change of the subsequent solid form of the operating liquid back to liquid form (melting) and/or vapor (sublimation) may be incorporated into the operation of the platform.


For applications that require higher chilling capacities in bursts, the device may include a thermal battery 16 of additional operating liquid and/or other material(s) with suitable heat capacity that increases the heat capacity of the operating chamber 12 to the level desired to support the thermal load from burst chilling/heating. The normal chilling/heating function of the operating chamber 12 recharges the thermal battery 16 between bursts. The thermal battery may be located within the operating chamber 12 or externally.


The overall device behavior can be controlled with device control system 40 based on inputs from the device or application including, but not limited to, temperature, pressure, flow, and/or other sensors. The device control system 40 can operate attached devices, e.g., pressure management device 32, bypass switch 46, circulating pump 28, and operating liquid supply 22.


Operating chamber 12 is connected to pressure management device 32 through vacuum line 45.


For configurations where the operating chamber 12 is providing cooling, the heating bypass mechanism 46 can direct the application fluid to bypass the operating chamber 12 and pass through a heating element either integrated or external to heating bypass mechanism 46. This permits a single device to support heating and cooling applications separately or cyclically when alternating heating/cooling cycles are desired.


Before continuing, it should be noted that the examples described above for FIG. 1 are for purposes of illustration, and are not intended to be limiting. Other devices and/or device configurations may be utilized to carry out the operations described herein.


The example configuration of the cooling and heating platform 10 shown in FIG. 1 includes a thermally-isolated operating chamber 12. A thermal isolation layer 14 is provided around the operating chamber 12. The operating chamber 12 includes a thermal battery 16, an operating liquid 18, and a heat exchanger 20. The example cooling and heating platform 10 also includes a pressure management device 32 and an operating liquid supply 22.


In addition, the example cooling and heating platform 10 shown in FIG. 1 includes a vapor recovery system 50. The vapor recovery system 50 removes operating liquid 18 from vapor formed in the operating chamber 12 via operating liquid recovery mechanism 52. The operating liquid recovery mechanism 52 may include a mechanism to recycle operating liquid 18 by condensing the removed vapor (e.g., including any baked out of the hygroscopic material). The vapor recovery system 50 also returns the operating liquid 18 to an operating liquid supply 22 for return to the operating chamber 12.


In an example, the vapor removal system 50 includes hygroscopic material for removal of water vapor. Another example is where a vapor removal mechanism utilizes an electrostatic approach, similar to removing particulates from power plant and other exhausts (e.g., where the operating liquid 18 is not water-based).


Various configurations of the cooling and heating platform may permit recharging, reloading, and/or replacing vapor removal material in the vapor removal mechanism 50. The vapor removal material may include hygroscopic materials or their equivalent in non-water based configurations. An example vapor removal mechanism 50 may include the mechanical replacement of a “cartridge” containing the vapor removal material. Another example vapor removal mechanism 50 may include a mechanism to add additional fresh material to the liquid recovery system 52. An example vapor removal mechanism 50 may also include mechanism that seals a cartridge or other container of the liquid recovery system 52 from the operating chamber 12. The vapor removal material may be exposed to the atmosphere and then dried (e.g., via a heater, or some other method that is tailored to the specific material used in the configuration).


The operations shown and described herein are provided to illustrate example implementations. It is noted that the operations are not limited to the ordering shown. Still other operations may also be implemented.



FIG. 2 is diagram 100, illustrating an application configuration of the example cooling and heating platform (e.g., shown in FIG. 1). In this example, the cooling and heating platform is implemented as a cycling chiller/heater platform 110 and can be applied to a physical therapy application 130.


In an example, the physical therapy application 130 may include a therapy wrap (e.g., to be placed on a body, such as an ankle wrap). The cycling chiller/heater platform 110 may be operatively associated with a controller 102 for the therapy wrap. The controller may include control electronics and/or software to implement a thermal control and circulating pump.


The cycling chiller/heater platform 110 may receive feedback 104 from the controller 102. The feedback can be utilized to control temperature to the therapy application 130. Fluid output lines 106a-b deliver the temperature controlled application fluid to the physical therapy application 130 (e.g., the ankle wrap). Fluid return or input lines 108a-b return the application fluid to the chiller platform 110 to maintain the desired temperature.


Of course, the example shown and described with reference to FIG. 2 is only illustrative of an example implementation of the cooling and heating platform disclosed herein. Still other applications 130 are contemplated as being within the scope of this disclosure, whether specifically called out or not, as will be readily understood by those having ordinary skill in the art after becoming familiar with the teachings herein.


It is noted that the examples shown and described are provided for purposes of illustration and are not intended to be limiting. Still other examples are also contemplated.

Claims
  • 1. A heating and cooling platform for use with an application, the platform comprising: an operating chamber for containing an operating liquid therein;a sensor located within the operating chamber for sensing at least one of temperature, pressure, and an operating liquid level within the operating chamber;a vacuum pump for adjusting a pressure within the operating chamber;a vapor recovery system for removing operating liquid from vapor formed within the operating chamber; the vapor recovery system including a hygroscopic material for adsorbing the vapor from the operating chamber;a heat exchanger containing an application fluid, the heat exchanger being located within the operating chamber and circulating the application fluid to the application;a fluid circulating pump for moving the application fluid through the heat exchanger; anda control system connected with the sensor, the vacuum pump, the vacuum recovery system, and the fluid circulating pump, wherein the control system is configured for controlling the vacuum pump and the vapor recovery system such that the pressure within the operating chamber is maintained at a user selected pressure level in response to feedback received from the sensor such that a boiling point of the operating fluid corresponds to a target application temperature and, consequently, the application fluid is maintained at the target application temperature suitable for the application.
  • 2. The platform of claim 1, further comprising a thermal isolation layer around the operating chamber.
  • 3. The platform of claim 1, further comprising a thermal battery in the operating chamber, wherein the thermal battery is configured for satisfying at least one of a burst chilling and a burst heating requirement exceeding an instantaneous capacity of the platform.
  • 4. The platform of claim 1 wherein the vapor recovery system is configured for condensing the removed vapor, andreturning the operating liquid to the operating chamber.
  • 5. The platform of claim 4, wherein the vapor recovery system includes an electrostatic device for removing vapor from the operating chamber, the electrostatic device being configured for causing liquid molecules within the vapor to move in a desired path using electrostatic fields by attracting ionized vapor to an electrode.
PRIORITY CLAIM

This application claims the benefit of U.S. Provisional Patent Application No. 62/321,887 filed Apr. 13, 2016 titled “Cooling and Heating Platform” of Hepp, et al., hereby incorporated by reference in its entirety as though full set forth herein.

US Referenced Citations (446)
Number Name Date Kind
1886768 Watson Nov 1932 A
1958899 MacAdams May 1934 A
2146622 Simon Feb 1939 A
2413386 Schulz Dec 1946 A
2510125 Meakin Jun 1950 A
2531074 Miller Nov 1950 A
2540547 Rodert Feb 1951 A
2608690 Kolb et al. Sep 1952 A
2703770 Melzer Mar 1955 A
2726658 Chessey Dec 1955 A
2954898 Freeberg Oct 1960 A
3261042 Baker Jul 1966 A
3320682 Sliman May 1967 A
3354898 Barnes Nov 1967 A
3470943 Van Huisen Oct 1969 A
3561435 Nicholson Feb 1971 A
3738367 Hardy Jun 1973 A
3744555 Fletcher et al. Jul 1973 A
3830676 Elkins Aug 1974 A
3871381 Roslonski Mar 1975 A
3901225 Sconce Aug 1975 A
3993053 Grossan Nov 1976 A
4009587 Robinson, Jr. Mar 1977 A
4020209 Yuan Apr 1977 A
4026299 Sauder May 1977 A
4116476 Porter et al. Sep 1978 A
4118946 Tubin Oct 1978 A
4147921 Walter et al. Apr 1979 A
4149529 Copeland et al. Apr 1979 A
4149541 Gammons et al. Apr 1979 A
4170998 Sauder Oct 1979 A
4184537 Sauder Jan 1980 A
4194247 Melander Mar 1980 A
4335726 Kolstedt Jun 1982 A
4338944 Arkans Jul 1982 A
4375831 Downing, Jr. Mar 1983 A
D269379 Bledsoe Jun 1983 S
4407276 Bledsoe Oct 1983 A
4412648 Ford et al. Nov 1983 A
4436125 Blenkush Mar 1984 A
4460085 Jantzen Jul 1984 A
4463751 Bledsoe Aug 1984 A
4466253 Jaster Aug 1984 A
4471759 Anderson et al. Sep 1984 A
4478436 Hashimoto Oct 1984 A
4547906 Nishida et al. Oct 1985 A
4550828 Baldwin et al. Nov 1985 A
4556457 McCord Dec 1985 A
4597384 Whitney Jul 1986 A
4678027 Shirey et al. Jul 1987 A
4691762 Elkins et al. Sep 1987 A
4699613 Donawick et al. Oct 1987 A
4718429 Smidt Jan 1988 A
4738119 Zafred Apr 1988 A
4753268 Palau Jun 1988 A
4765338 Turner et al. Aug 1988 A
4817588 Bledsoe Apr 1989 A
4834073 Bledsoe et al. May 1989 A
4844072 French et al. Jul 1989 A
4884304 Elkins Dec 1989 A
4925603 Nambu May 1990 A
4955369 Bledsoe et al. Sep 1990 A
4955435 Shuster et al. Sep 1990 A
4962761 Golden Oct 1990 A
4964282 Wagner Oct 1990 A
4964402 Grim et al. Oct 1990 A
4966145 Kikumoto et al. Oct 1990 A
4976262 Palmacci Dec 1990 A
4996970 Legare Mar 1991 A
5002270 Shine Mar 1991 A
5014695 Benak et al. May 1991 A
5022109 Pekar Jun 1991 A
5033136 Elkins Jul 1991 A
5052725 Meyer et al. Oct 1991 A
5056563 Glossop Oct 1991 A
5072875 Zacoi Dec 1991 A
5074285 Wright Dec 1991 A
5076068 Mikhail Dec 1991 A
5080089 Mason et al. Jan 1992 A
5080166 Haugeneder Jan 1992 A
5086771 Molloy Feb 1992 A
5097829 Quisenberry Mar 1992 A
5104158 Meyer et al. Apr 1992 A
5112045 Mason et al. May 1992 A
5113877 Johnson, Jr. et al. May 1992 A
5163425 Nambu et al. Nov 1992 A
5163923 Donawick et al. Nov 1992 A
5172689 Wright Dec 1992 A
5186698 Mason et al. Feb 1993 A
5201552 Hohmann et al. Apr 1993 A
5230335 Johnson, Jr. et al. Jul 1993 A
5232020 Mason et al. Aug 1993 A
5241951 Mason et al. Sep 1993 A
5243706 Frim et al. Sep 1993 A
5269369 Faghri Dec 1993 A
D345609 Mason et al. Mar 1994 S
5294156 Kumazaki et al. Mar 1994 A
D345802 Mason et al. Apr 1994 S
D345803 Mason et al. Apr 1994 S
5303716 Mason et al. Apr 1994 A
5305712 Goldstein Apr 1994 A
5314455 Johnson, Jr. et al. May 1994 A
5316250 Mason et al. May 1994 A
5316547 Gildersleeve May 1994 A
D348106 Mason et al. Jun 1994 S
5324319 Mason et al. Jun 1994 A
D348518 Mason et al. Jul 1994 S
D351472 Mason et al. Oct 1994 S
5352174 Mason et al. Oct 1994 A
5353605 Naaman Oct 1994 A
5354101 Anderson, Jr. Oct 1994 A
5354103 Torrence et al. Oct 1994 A
D352781 Mason et al. Nov 1994 S
5372575 Sebastian Dec 1994 A
5383689 Wolfe Jan 1995 A
RE34883 Grim Mar 1995 E
5395399 Rosenwald Mar 1995 A
5407421 Goldsmith Apr 1995 A
5411541 Bell et al. May 1995 A
5415625 Cassford et al. May 1995 A
5417720 Mason May 1995 A
5427577 Picchietti et al. Jun 1995 A
5441533 Johnson et al. Aug 1995 A
5449379 Hadtke Sep 1995 A
5451201 Prengler Sep 1995 A
5466250 Johnson, Jr. et al. Nov 1995 A
5470353 Jensen Nov 1995 A
5476489 Koewler Dec 1995 A
5484448 Steele et al. Jan 1996 A
5494074 Ramacier, Jr. et al. Feb 1996 A
5496358 Rosenwald Mar 1996 A
5507792 Mason et al. Apr 1996 A
5509894 Mason et al. Apr 1996 A
5514081 Mann May 1996 A
5520622 Bastyr et al. May 1996 A
5524293 Kung Jun 1996 A
5527268 Gildersleeve et al. Jun 1996 A
5533354 Pirkle Jul 1996 A
5539934 Ponder Jul 1996 A
D372534 Andrews et al. Aug 1996 S
5553712 Tisbo et al. Sep 1996 A
5554119 Harrison et al. Sep 1996 A
5556138 Nakajima et al. Sep 1996 A
5564124 Elsherif et al. Oct 1996 A
5569172 Padden et al. Oct 1996 A
5592694 Yewer, Jr. Jan 1997 A
5593426 Morgan et al. Jan 1997 A
5630328 Hise et al. May 1997 A
5634886 Bennett Jun 1997 A
5634940 Panyard Jun 1997 A
5638707 Gould Jun 1997 A
5645671 Tillinghast Jul 1997 A
D382113 DuRapau Aug 1997 S
5653741 Grant Aug 1997 A
D383547 Mason et al. Sep 1997 S
D383848 Mason et al. Sep 1997 S
5662239 Heuvelman Sep 1997 A
5662695 Mason et al. Sep 1997 A
5672152 Mason et al. Sep 1997 A
5683118 Slocum Nov 1997 A
5728058 Ouellette et al. Mar 1998 A
5732464 Lamont Mar 1998 A
5755275 Rose et al. May 1998 A
5755755 Panyard May 1998 A
5772618 Mason et al. Jun 1998 A
5782780 Mason et al. Jul 1998 A
5792216 Kappel Aug 1998 A
5807294 Cawley et al. Sep 1998 A
5827208 Mason et al. Oct 1998 A
5833638 Nelson Nov 1998 A
5862675 Scaringe et al. Jan 1999 A
5865841 Kolen et al. Feb 1999 A
5866219 McClure et al. Feb 1999 A
5868690 Eischen Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5895418 Saringer Apr 1999 A
5913885 Klatz et al. Jun 1999 A
5920934 Hannagan et al. Jul 1999 A
5951598 Bishay et al. Sep 1999 A
5967225 Jenkins Oct 1999 A
5968072 Hite et al. Oct 1999 A
5970519 Weber Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5984885 Gaylord, Jr. et al. Nov 1999 A
5989285 DeVilbiss et al. Nov 1999 A
5992459 Sugita et al. Nov 1999 A
5997495 Cook et al. Dec 1999 A
6030412 Klatz et al. Feb 2000 A
6036107 Aspen et al. Mar 2000 A
6036718 Ledford et al. Mar 2000 A
6048326 Davis et al. Apr 2000 A
6053169 Hunt Apr 2000 A
6055670 Parker May 2000 A
6074413 Davis et al. Jun 2000 A
6083256 Ovanesian Jul 2000 A
D430288 Mason et al. Aug 2000 S
D430289 Mason et al. Aug 2000 S
6105382 Reason Aug 2000 A
6109338 Butzer Aug 2000 A
6117164 Gildersleeve et al. Sep 2000 A
6146413 Harman Nov 2000 A
6156059 Olofsson Dec 2000 A
6178562 Elkins Jan 2001 B1
6197045 Carson Mar 2001 B1
6228106 Simbruner et al. May 2001 B1
6238427 Matta May 2001 B1
6260890 Mason Jul 2001 B1
6261314 Rich Jul 2001 B1
6270481 Mason et al. Aug 2001 B1
6306112 Bird Oct 2001 B2
6328276 Falch et al. Dec 2001 B1
6352550 Gildersleeve et al. Mar 2002 B1
6354635 Dyson et al. Mar 2002 B1
6361514 Brown et al. Mar 2002 B1
6368357 Schon et al. Apr 2002 B1
6371976 Vrzalik et al. Apr 2002 B1
6382678 Field et al. May 2002 B1
6398748 Wilson Jun 2002 B1
6405080 Lasersohn et al. Jun 2002 B1
6406445 Ben-Nun Jun 2002 B1
6440159 Edwards et al. Aug 2002 B1
6443498 Liao Sep 2002 B1
6508831 Kushnir Jan 2003 B1
6547284 Rose et al. Apr 2003 B2
6551264 Cawley et al. Apr 2003 B1
6551347 Elkins Apr 2003 B1
6551348 Blalock et al. Apr 2003 B1
6616620 Sherman et al. Sep 2003 B2
6620187 Carson et al. Sep 2003 B2
6641601 Augustine et al. Nov 2003 B1
6645232 Carson Nov 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
D486870 Mason Feb 2004 S
6692518 Carson Feb 2004 B2
6695872 Elkins Feb 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6719713 Mason Apr 2004 B2
6719728 Mason et al. Apr 2004 B2
6802823 Mason Oct 2004 B2
6818012 Ellingboe Nov 2004 B2
6823682 Jenkins et al. Nov 2004 B1
6871878 Miros Mar 2005 B2
6893414 Goble et al. May 2005 B2
6926311 Chang et al. Aug 2005 B2
6932304 Villamar Aug 2005 B1
6936019 Mason Aug 2005 B2
6942015 Jenkins Sep 2005 B1
6961611 Dupelle Nov 2005 B2
7001417 Elkins Feb 2006 B2
7008445 Lennox Mar 2006 B2
7017213 Chisari Mar 2006 B2
7025709 Riggall Apr 2006 B2
7044960 Voorhees et al. May 2006 B2
7052509 Lennox et al. May 2006 B2
7059329 Mason et al. Jun 2006 B2
7060045 Mason et al. Jun 2006 B2
7060086 Wilson et al. Jun 2006 B2
7093903 O'Connor et al. Aug 2006 B2
7107629 Miros et al. Sep 2006 B2
7108664 Mason et al. Sep 2006 B2
7117569 Bledsoe Oct 2006 B2
7125417 Mizrahi Oct 2006 B2
7141131 Foxen et al. Nov 2006 B2
7156054 York Jan 2007 B1
7166083 Bledsoe Jan 2007 B2
7191798 Edelman et al. Mar 2007 B2
7198093 Elkins Apr 2007 B1
7235059 Mason et al. Jun 2007 B2
7244239 Howard Jul 2007 B2
7306568 Diana Dec 2007 B2
7308304 Hampton et al. Dec 2007 B2
7326196 Olsen et al. Feb 2008 B2
7361186 Voorhees et al. Apr 2008 B2
7418755 Bledsoe et al. Sep 2008 B2
7434844 Kao Oct 2008 B2
7448653 Jensen et al. Nov 2008 B2
7479122 Ceriani et al. Jan 2009 B2
7485103 Mason et al. Feb 2009 B2
7490620 Tesluk et al. Feb 2009 B2
7500957 Bledsoe Mar 2009 B2
7640764 Gammons et al. Jan 2010 B2
7658205 Edelman et al. Feb 2010 B1
7694693 Edelman et al. Apr 2010 B1
7731244 Miros et al. Jun 2010 B2
7785283 Bledsoe Aug 2010 B1
7797044 Covey et al. Sep 2010 B2
7837638 Miros et al. Nov 2010 B2
7864941 Bledsoe et al. Jan 2011 B1
7871427 Dunbar et al. Jan 2011 B2
7896910 Schirrmacher et al. Mar 2011 B2
7908692 Lange Mar 2011 B2
7914563 Mason et al. Mar 2011 B2
7959588 Wolpa Jun 2011 B1
7959657 Harsy Jun 2011 B1
7988653 Fout et al. Aug 2011 B2
8052628 Edelman et al. Nov 2011 B1
8066752 Hamilton et al. Nov 2011 B2
8109273 Golden et al. Feb 2012 B2
8121681 Hampton et al. Feb 2012 B2
8182521 Kane et al. May 2012 B2
8216163 Edelman Jul 2012 B2
8216290 Shawver et al. Jul 2012 B2
8216398 Bledsoe et al. Jul 2012 B2
8226698 Edelman et al. Jul 2012 B2
8251932 Fout Aug 2012 B2
8251936 Fout et al. Aug 2012 B2
8273045 Ceriani Sep 2012 B2
8277403 Ceriani et al. Oct 2012 B2
8328742 Bledsoe Dec 2012 B2
8397518 Vistakula Mar 2013 B1
8414512 Fout Apr 2013 B2
8419670 Downing Apr 2013 B2
8425579 Edelman et al. Apr 2013 B1
8444581 Maxon-Maldonado et al. May 2013 B1
8512263 Gammons Aug 2013 B2
8613762 Bledsoe Dec 2013 B2
9066781 Muehlbauer et al. Jun 2015 B2
9345614 Schaefer et al. May 2016 B2
9402763 Bledsoe Aug 2016 B2
9566187 Edelman et al. Feb 2017 B2
10426655 Schaefer et al. Oct 2019 B2
20010018604 Elkins Aug 2001 A1
20010034545 Elkins Oct 2001 A1
20010034546 Elkins Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20020019657 Elkins Feb 2002 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020041621 Faries et al. Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020082668 Ingman Jun 2002 A1
20020093189 Krupa Jul 2002 A1
20020108279 Hubbard et al. Aug 2002 A1
20020184784 Strzala Dec 2002 A1
20030060761 Evans et al. Mar 2003 A1
20030196352 Bledsoe et al. Oct 2003 A1
20040064170 Radons et al. Apr 2004 A1
20040064171 Briscoe et al. Apr 2004 A1
20040068309 Edelman Apr 2004 A1
20040158303 Lennox et al. Aug 2004 A1
20040162587 Hampton et al. Aug 2004 A1
20040167594 Elkins Aug 2004 A1
20040210283 Rose et al. Oct 2004 A1
20040225341 Schock et al. Nov 2004 A1
20040243202 Lennox Dec 2004 A1
20050107855 Lennox et al. May 2005 A1
20050126578 Garrison et al. Jun 2005 A1
20050131324 Bledsoe Jun 2005 A1
20050136213 Seth et al. Jun 2005 A1
20050143796 Augustine et al. Jun 2005 A1
20050143797 Parish et al. Jun 2005 A1
20060058858 Smith Mar 2006 A1
20060144557 Koscheyev et al. Jul 2006 A1
20060156761 Mola Jul 2006 A1
20060190062 Worthen Aug 2006 A1
20060200057 Sterling Sep 2006 A1
20060287697 Lennox Dec 2006 A1
20070060987 Grahn et al. Mar 2007 A1
20070108829 Lehn et al. May 2007 A1
20070118194 Mason et al. May 2007 A1
20070118965 Hoffman May 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070161932 Pick et al. Jul 2007 A1
20070161933 Ravikumar Jul 2007 A1
20070167895 Gramza et al. Jul 2007 A1
20070191918 Machold et al. Aug 2007 A1
20070282230 Valderrabano et al. Dec 2007 A1
20080000474 Jochle et al. Jan 2008 A1
20080058911 Parish et al. Mar 2008 A1
20080065172 Magdych Mar 2008 A1
20080067095 Mueller Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080097560 Radziunas et al. Apr 2008 A1
20080097561 Melsky et al. Apr 2008 A1
20080114406 Hampton et al. May 2008 A1
20080132816 Kane et al. Jun 2008 A1
20080132976 Kane et al. Jun 2008 A1
20080161891 Pierre et al. Jul 2008 A1
20080176199 Stickney et al. Jul 2008 A1
20080188915 Mills et al. Aug 2008 A1
20080234788 Wasowski Sep 2008 A1
20080249593 Cazzini et al. Oct 2008 A1
20080269852 Lennox et al. Oct 2008 A1
20080275534 Noel Nov 2008 A1
20080283426 Primer et al. Nov 2008 A1
20090005841 Schirrmacher et al. Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090038195 Riker et al. Feb 2009 A1
20090062890 Ugajin et al. Mar 2009 A1
20090069731 Parish et al. Mar 2009 A1
20090183410 Tursso et al. Jul 2009 A1
20090270930 Walker et al. Oct 2009 A1
20100006631 Edwards et al. Jan 2010 A1
20100076531 Beran et al. Mar 2010 A1
20100121392 Stickney et al. May 2010 A1
20100137951 Lennox et al. Jun 2010 A1
20100139294 Lowe et al. Jun 2010 A1
20100145421 Tomlinson et al. Jun 2010 A1
20100161013 Heaton Jun 2010 A1
20100217349 Fahey Aug 2010 A1
20100241120 Bledsoe et al. Sep 2010 A1
20100318143 Chapman et al. Dec 2010 A1
20110004132 Cook Jan 2011 A1
20110028873 Miros et al. Feb 2011 A1
20110040359 Harris et al. Feb 2011 A1
20110046700 McDonald et al. Feb 2011 A1
20110048049 Asai Mar 2011 A1
20110087142 Ravikumar et al. Apr 2011 A1
20110098792 Lowe et al. Apr 2011 A1
20110098793 Lowe et al. Apr 2011 A1
20110101117 Miyauchi May 2011 A1
20110106023 Lowe May 2011 A1
20110152982 Richardson Jun 2011 A1
20110152983 Schirrmacher et al. Jun 2011 A1
20110307038 Stiehr et al. Dec 2011 A1
20120116272 Hampton et al. May 2012 A1
20120143111 Bledsoe et al. Jun 2012 A1
20120172774 Lowe et al. Jul 2012 A1
20120179084 Lipshaw et al. Jul 2012 A1
20120233736 Tepper et al. Sep 2012 A1
20120245483 Lundqvist Sep 2012 A1
20120288848 Latham et al. Nov 2012 A1
20120330199 Lurie et al. Dec 2012 A1
20130006154 Lowe Jan 2013 A1
20130006335 Lowe Jan 2013 A1
20130012847 Lowe et al. Jan 2013 A1
20130013033 Lowe Jan 2013 A1
20130123890 Latham May 2013 A1
20130190553 Wong et al. Jul 2013 A1
20130245519 Edelman et al. Sep 2013 A1
20130245729 Edelman et al. Sep 2013 A1
20130331914 Lee et al. Dec 2013 A1
20140014292 Rice Jan 2014 A1
20140046232 Sham et al. Feb 2014 A1
20140142473 Lowe et al. May 2014 A1
20140222121 Spence et al. Aug 2014 A1
20140243939 Lowe et al. Aug 2014 A1
20150075764 Goth Mar 2015 A1
20150150717 Lowe et al. Jun 2015 A1
20150366703 Du Dec 2015 A1
20160038336 Hilton et al. Feb 2016 A1
20160128865 Lowe May 2016 A1
20160166428 Hilton et al. Jun 2016 A1
20160350509 Sharma Dec 2016 A1
20170145834 Lewis May 2017 A1
20170299238 Hepp et al. Oct 2017 A1
Foreign Referenced Citations (47)
Number Date Country
2304378 Jan 1999 CN
1373649 Oct 2002 CN
2880025 Mar 2007 CN
201001805 Jan 2008 CN
201070419 Jun 2008 CN
101524301 Sep 2009 CN
3343664 Mar 1985 DE
3505274 Aug 1986 DE
3637841 Feb 1988 DE
4445627 Jun 1996 DE
202004008515 Sep 2004 DE
102006053451 May 2008 DE
102006053452 May 2008 DE
102010022799 Dec 2011 DE
102010052449 May 2012 DE
102012002175 Aug 2013 DE
0344949 Dec 1989 EP
0412708 Feb 1991 EP
0535830 Apr 1993 EP
0861651 Apr 2002 EP
1329676 Jul 2003 EP
1393751 Mar 2004 EP
1972312 Sep 2008 EP
819022 Oct 1937 FR
330552 Oct 1935 IT
H08229061 Sep 1996 JP
2000288007 Oct 2000 JP
2002272773 Sep 2002 JP
200153967 Aug 1999 KR
100654317 Dec 2006 KR
9213506 Aug 1992 WO
9215263 Sep 1992 WO
9409732 May 1994 WO
9626693 Sep 1996 WO
9721412 Jun 1997 WO
9807397 Feb 1998 WO
9944552 Sep 1999 WO
0023016 Apr 2000 WO
0055542 Sep 2000 WO
0067685 Nov 2000 WO
0154635 Aug 2001 WO
0219954 Mar 2002 WO
03072008 Sep 2003 WO
2005082301 Sep 2005 WO
2006110405 Oct 2006 WO
2011019603 Feb 2011 WO
2017223417 Dec 2017 WO
Non-Patent Literature Citations (4)
Entry
Van Eps et al.; Equine laminitis: cryotherapy reduces the severity of the acute lesion; Equine Veterinary Journal; vol. 36; No. 3; pp. 255-260; Apr. 2004.
Cothera LLC; VPULSE System Users Manual; 100149 Rev E; (C) 2013; 18 pgs. (manual rev. dated Jul. 2013).
Van Eps et al.; distal limb cryotherapy for the prevention of acute laminitis; Clin Tech Equine Pract; vol. 3; pp. 64-70; Mar. 2004.
International Search Report and Written Opinion for related PCT/US19/42720 dated Oct. 21, 2019.
Related Publications (1)
Number Date Country
20170299238 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62321887 Apr 2016 US